$$ a²+b²=c²,gcd(a,b,c)=1 $$ を満たす自然数a,b,cが存在するとき 任意の自然数tに対して $$ aₜ²+bₜ²=c²ᵗ,gcd(aₜ,bₜ)=1 $$ を満たす自然数aₜ,bₜが存在することを示せ
例)ひらがなで入力してください。
有理数rでcos(r)とsin(r)が共に有理数となるrの条件を求めよ
Discordでログイン パスワードでログイン
ログインすると? ログインすると、解答・ギブアップをする他に、問題を投稿したり、ランキングで競うことができます。
または
ログインせずに解答する
この問題を解いた人はこんな問題も解いています
全ての自然数に対し、偶数の時は2で割り、奇数の時は1を足して2で割る操作を繰り返すと必ず1になることを証明せよ。
特に指定はなし。
$\pi$ が $\dfrac{1000\pi}{1001}\risingdotseq 3.13845\cdots$ よりも大きいことを示せ
正整数値に対して定義され正整数値をとる関数 $f(x)$ は,任意の正整数 $a, b, c$ において,以下を満たしました. $$ f(a)+f(b)+f(c)=f(abc)+2 $$また,$f(15)=15$ を満たすとき,$f(2025)$ としてあり得る値の総和を求めてください.
半角数字で解答してください.
次の式を満たす相異なる正の整数$p,q$を全て求めよ。
$$p^{p+q}−q^{p+q}=(pq)^p−(pq)^q$$
$p+q$の値をそれぞれの組で求め総和した値を半角で入力してください。
63999271を素因数分解した時に出てくる素因数全ての和を求めなさい。
例:35の時 5+7=12と解答。
(10進法で)正の整数を書き、各桁の数字を赤か青に塗ったものを色付き整数と定義する。 例えば、57という数字を色付き整数で表すと、5,7をそれぞれ赤、青に塗るかのそれぞれ2通りあるので4通りの表し方がある。 次の条件を満たす色付き整数の個数を求めよ。 ・各桁の数の総和が10である。 ・どの桁にも0は使われていない。
半角整数で入力してください。
$3^{2025}$を $11$ で割った余りを求めよ。
半角左詰め
$\pi$ と $\sqrt{2}+\sqrt{3}$ はどちらが大きいか。
${999}$を2以上の最小の$2$つの立方数の差で表せ。
a>b>1の自然数を用いてa^3-b^3というふうに表せるのでabと2つの整数を連続して半角で書いてください。 (例:15^3-3^3なら解答は153)
ある一の位も百の位も $0$ でない $3$ 桁の正整数を $x$ として, $x$ を十進法で逆から読んだ数を $X$ とおきます. 例えば, $x=314$ のとき $X=413$ です. $x+X$ の下 $2$ 桁が $57$ のとき, $x$ としてあり得る値の総和を求めてください.
半角数字で入力してください
https://pororocca.com/problem/19/ こちらの問題の設定で,「裏裏裏裏裏表表表表表」というピザの塔ができるような調理は何通りあるか答えなさい.
半角数字で入力してください.
(1) 定積分
$$ \int_0^1 \frac{x\log x}{(x+1)^2}dx $$
の値を求めよ。
(2) 関数列 ${f_n(x)}$ を
$$ f_{n+1}(x)=(x^x)^{f_n(x)},\quad f_1(x)=x^x $$
で定める。定積分
$$ \int_0^1(x^x)^{{(x^x)}^{(x^x)\cdots}}dx:=\int_0^1\lim_{n\to \infty} f_n(x)\ dx $$
の値を求めよ。ただしテトレーション $x^{{x^{x\cdots}}}$ は底 $x$ が $e^{-e}<x<e^{1/e}$ のとき収束することは証明せずに用いて良い。
この問題の正解判定は出題者により手動で行われるため、判定までに時間がかかることがある。