$x>0$において、次の関数を定義する。 $g(x) = √(x² + cos²x + sin⁴x + 2(xcosx + xsin²x + cosxsin²x))$ このとき、以下の極限値を求めよ。 $lim_{x→0^+} \frac{g(x) - (x + \cos x)}{x^2}$
半角
Discordでログイン パスワードでログイン
ログインすると? ログインすると、解答・ギブアップをする他に、問題を投稿したり、ランキングで競うことができます。
または
ログインせずに解答する
この問題を解いた人はこんな問題も解いています
2つの実数 $\alpha$ と $\beta$ を次のように定義する。
この $\alpha, \beta$ を用いて、自然数 $n$ に対する数列 ${T_n}$ を以下で定める。
$$T_n = \alpha^{2^n} + \beta^{2^n}$$
このとき、$T_3$ の値は、ある正の整数 $A$ を用いて、
$$T_3= A + \sqrt{A^2-1}$$
と一意に表現することができる。
この整数 $A$ の値を求めよ。
$x \ge -1$ の範囲で定義される関数 $f(x)$ を、以下の無限多重根号によって定める。 $$f(x) = \sqrt{x+2\sqrt{x+2\sqrt{x+2\sqrt{x+\cdots}}}}$$ $f(x)$ の逆関数を $g(x) = f^{-1}(x)$ とする。このとき、以下の定積分の値を求めよ。 $$\int_1^4 g(x) \, dx$$
$a,b,c\ (a\neq0)$ を実数とする.放物線 $y=ax^2+bx+c$ が,$3$ 直線 $\ y=x-2,\ y=-3x+2,\ y=7x-3$ の全てと接するとき,$a,b,c$ の値を求めよ.
答えは,$a,b,c$ の値をそれぞれ $1,2,3$ 行目に記入せよ.ただし,整数でない有理数は既約分数(分母は自然数,分子は整数で,互いに素)で表し,$\displaystyle\frac{-5}{13}$ なら -5/13 のように記入して答えよ.
【解答例】 1 -2 -1/3
サイコロを $3$ 回振って出た目を $a, b, c$ とする.このとき,$xy$ 平面上の $3$ 直線 $ax+2by+3c=0,\ 3bx+cy+2a=0,\ 2cx+3ay+b=0$ によって囲まれる三角形が存在する確率を求めよ. 答えは互いに素な自然数 $\eta,\zeta$ を用いて $\displaystyle\frac \eta\zeta$ と表されるので,$1$ 行目に $\eta$ を,$2$ 行目に $\zeta$ を答えよ.
方程式 $x^2+xy+y^3=7$ の表す図形を $y$ 方向に $\fbox{ (1) }$ 平行移動してから $\fbox{ (2) }$ に関して対称移動し,$x$ 方向に $\fbox{ (3) }$ 平行移動し,$\fbox{ (4) }$ に関して対称移動すると,方程式 $x^3-3x^2+xy-y^2+5y=0$ の表す図形となる.
以上の空欄 $(1)\sim(4)$ を適切に補充せよ.ただし,$(1),(3)$ には数値を答え,$(2),(4)$ には以下の語群から言葉を選び答えよ.
【語群】 $\mathrm A.\,x$ 軸 $\mathrm B.\,y$ 軸 $\mathrm C.$ 直線 $y=x$
答えは,空欄 $(1),(2),(3),(4)$ に当てはまる数または記号をそれぞれ $1,2,3,4$ 行目に記して答えよ. ここで,整数でない有理数は既約分数(分母は自然数,分子は整数で,互いに素)で表し,$\displaystyle\frac{-5}{13}$ なら -5/13 と記すこと.
【解答例】 3 A -5/13 B
$\alpha$を$0<$$\alpha$$<\frac{\pi}{6}$をみたす実数とします。 tan$\alpha$ , tan$2\alpha$ , tan$3\alpha$ がこの順に等比数列をなすような$\alpha$の値は$\frac{\pi}{n}$の形で表されます。$n$を答えてください。
半角数字で答えてください
${}$ 西暦2025年問題第2弾です。第1弾に引き続き虫食算で、今回は掛け算にしてみました。数学的手法(約数や倍数、偶奇性や剰余、不等式による絞り込み、などなど)を適宜用いることで面倒な場合分けや仮置きを軽減できるよう仕込んでいるのは変わりません。パズル的に解くのもよし、数学的にゴリゴリ解くのもよし、どうぞお好きなようにお楽しみください!
${}$ 解答は上2行を「被乗数×乗数」の形で入力してください。 (例) $2025 \times 102 = 206550$ → $\color{blue}{2025 \text{×} 102}$ 入力を一意に定めるための処置です。数字は半角で、「×」の演算記号はTeX記法(\times)でも、絵文字や環境依存文字でもなく、全角記号の「×」でお願いします。空白(スペース)も入れる必要はありません。
次の式を満足す実数 $N$ を求めなさい.
$$\sum_{k=1}^{2024}(2025-k) \cdot 2024^k \cdot 2025^{2024-k} = 2024^N$$
$N$ をそのまま入力してください.
以下の2次方程式 $$ x^{2}-2ax+b=0 ― (*) $$ について,自然数$n$を用いて以下の手順で係数$a,b$を定める。 $a:-n$以上$n$以下の整数が書かれたカードの中から1枚引いて書かれていた数字。 $b:-n$以上$n^{2}$以下の整数が書かれたカードの中から1枚引いて書かれていた数字。 カードを引く確率は同様に確からしいとし,できた2次方程式が実数解をもつ確率を$P(n)$とする。
$(3)$ $\lim_{n\to \infty}P(n)$を求めよ。
(4)は,自作場合の数・確率1-4につづく
2025/01/07追記 解説をアップデート,全員に対して公開に設定
分母分子の順に半角数字2つを空白区切りで回答 例)$\frac{1}{2}$と答えたいときは 2 1 と回答
この問題は(3)です。自作場合の数・確率1-2を解いてから解くことをお勧めします。
方程式x⁶−6x⁵+15x⁴−47x³+15x²−6x+1=0の実数解を求めて下さい。
正の整数a.b.cを用いて$\frac{b±√c}{a}$の形で表せられるので、a+b+cの値を半角で解答して下さい。
AクラスとBクラスの生徒の合計は24人である.鉛筆とボールペンについて在庫が何本かあり,それらを生徒に配りたい.Aクラスの生徒に鉛筆を7本ずつ配ろうとすると最後の1人で足りなくなり,Bクラスの生徒にボールペンを6本ずつ配ろうとすると最後の1人で足りなくなる.そこで,逆にAクラスの生徒にボールペンを,Bクラスの生徒に鉛筆を配ると,クラス毎に同じ本数だけ,在庫をちょうど配りきることができた.(1人あたりに配った本数は,AクラスとBクラスでは同じとは限らない.) Aクラスの生徒の人数としてありえる数を全て求めよ.
答えは,小さい順に空白を入れずカンマで区切って記入せよ.例えば,1と2と3があり得るなら 1,2,3 と答えよ.
面積 $1$ の平行四辺形 $\mathrm{ABCD}$ に対し,辺 $\mathrm{AB},\mathrm{BC},\mathrm{CD},\mathrm{DA}$ の中点をそれぞれ $\mathrm K,\mathrm L,\mathrm M,\mathrm N$ とする.$8$ 直線 $\mathrm{AL},\mathrm{AM},\mathrm{BM},\mathrm{BN},\mathrm{CN},\mathrm{CK},\mathrm{DK},\mathrm{DL}$ によって囲まれてできる $8$ 角形の面積を求めよ.
ただし,整数でない有理数は既約分数(分母は自然数,分子は整数で,互いに素)で表し,$\displaystyle\frac{5}{13}$ なら 5/13 のように記入して答えよ.