KOTAKE杯007(I)

MrKOTAKE 自動ジャッジ 難易度: 数学 > 競技数学
2025年8月1日10:00 正解数: 14 / 解答数: 16 (正答率: 87.5%) ギブアップ不可
この問題はコンテスト「KOTAKE杯007」の問題です。

全 16 件

回答日時 問題 解答者 結果
2025年8月3日14:17 KOTAKE杯007(I) nmoon
正解
2025年8月2日12:59 KOTAKE杯007(I) Nyarutann
正解
2025年8月1日19:50 KOTAKE杯007(I) tomorunn
正解
2025年8月1日19:47 KOTAKE杯007(I) tomorunn
不正解
2025年8月1日19:45 KOTAKE杯007(I) tomorunn
不正解
2025年8月1日18:00 KOTAKE杯007(I) hsneba
正解
2025年8月1日17:25 KOTAKE杯007(I) kinonon
正解
2025年8月1日17:17 KOTAKE杯007(I) uran
正解
2025年8月1日11:31 KOTAKE杯007(I) wasab1
正解
2025年8月1日10:46 KOTAKE杯007(I) kurao
正解
2025年8月1日10:46 KOTAKE杯007(I) miq_39
正解
2025年8月1日10:42 KOTAKE杯007(I) kitaaa
正解
2025年8月1日10:27 KOTAKE杯007(I) 34tar0
正解
2025年8月1日10:12 KOTAKE杯007(I) pomodor_ap
正解
2025年7月18日23:35 KOTAKE杯007(I) Uirou
正解
2025年7月9日0:58 KOTAKE杯007(I) Lamenta
正解

おすすめ問題

この問題を解いた人はこんな問題も解いています

KOTAKE杯007(J)

MrKOTAKE 自動ジャッジ 難易度:
3日前

15

問題文

$AB<AC$ を満たす鋭角三角形 $ABC$ があり, $A$ から $BC$ に下ろした垂線の足を $H$ とし,線分 $AH$ 上に $\angle ABP = \angle ACP$ を満たす点 $P$ をとります.また,線分 $BC$ と三角形 $ACP$ の外接円の交点のうち $C$ でないものを $D$ とし,直線 $BP,AD$ の交点を $E$ とすれば,
$$BP=CD=5,\quad PE=3$$
が成立したので三角形 $ABC$ の面積を解答してください.

解答形式

答えは正の整数値となるので,その整数値を半角で入力してください.

KOTAKE杯007(Q)

MrKOTAKE 自動ジャッジ 難易度:
3日前

14

問題文

鋭角三角形 $ABC$ があり,$A$ から $BC$ におろした垂線の足を $H$ とします.三角形 $ABC$ の外接円の,$C$ を含まない方の弧 $AB$ 上に点 $P$ をとれば,
$$\angle APH=90^\circ ,\quad BH=3,\quad CH=4,\quad AP=10$$
が成立したので線分 $AB$ の長さの $2$ 乗を解答してください.

解答形式

答えは正の整数値となるので,その整数値を半角で入力してください.

KOTAKE杯007(R)

MrKOTAKE 自動ジャッジ 難易度:
3日前

14

問題文

三角形 $ABC$ があり,内心を $I$ とします.直線 $BI,AC$ の交点を $D$ とし,端点を除く線分 $BC$ 上に $4$ 点 $ABDE$ が共円となるように点 $E$ をとると,直線 $AI,DE$ は三角形 $ABC$ の外接円上で交わり,以下が成立しました.
$$AD=2,\quad BE=3$$
このとき線分 $AC$ の長さは.正の整数 $a,b,c$ を用いて$\frac{b+\sqrt{c}}{a} $ と表されるので $a+b+c$ を解答してください.

解答形式

答えは正の整数値となるので,その整数値を半角で入力してください.

KOTAKE杯007(L)

MrKOTAKE 自動ジャッジ 難易度:
3日前

13

問題文

鋭角三角形 $ABC$ があり,点$A,B,C$ から対辺におろした垂線の足をそれぞれ $D,E,F$ とします.$AD,EF$ の交点を $P$ とすると,以下が成立しました.
$$DE=37,\quad EF=40,\quad AP:PD=5:6$$
このとき線分 $DF$ の長さを解答してください.

解答形式

答えは正の整数値となるので,その整数値を半角で入力してください.

KOTAKE杯007(N)

MrKOTAKE 自動ジャッジ 難易度:
3日前

12

問題文

鋭角三角形 $ABC$ があり重心を $G$,垂心を $H$ とします.線分 $GH$ の中点を $M$ とすれば,直線 $AM$ は $ \angle BAC$ を二等分し,

$$BC=30,\quad CH=25$$
が成立しました.このとき線分 $AB$ の長さの $2$ 乗を解答してください.

解答形式

答えは正の整数値となるので,その整数値を半角で入力してください.

KOTAKE杯007(M)

MrKOTAKE 自動ジャッジ 難易度:
3日前

11

問題文

三角形 $ABC$ があり内心を $I$ とし,辺 $BC$ の中点を $M$ とすると,
$$AB:AC=3:5,\quad AI=IM=20$$
が成立したので線分 $AB$ の長さの $2$ 乗を解答してください.

解答形式

答えは正の整数値となるので,その整数値を半角で入力してください.

KOTAKE杯007(F)

MrKOTAKE 自動ジャッジ 難易度:
3日前

19

問題文

三角形 $ABC$ があり,線分 $BC$ 上に点 $P$ をとる.三角形 $ABP$$,$ 三角形 $ACP$ の内心をそれぞれ $I,J$ とすると,
$$IJ \parallel BC,\quad AB:AC=4:5,\quad BP=8,\quad CP=9$$
が成立したので三角形 $ABC$ の面積を解答してください.

解答形式

答えは正の整数値となるので,その整数値を半角で入力してください.

KOTAKE杯007(P)

MrKOTAKE 自動ジャッジ 難易度:
3日前

11

問題文

$\angle A$ が鈍角の二等辺三角形 $ABC$ があり,外接円を $\Omega$ とします.$\Omega$ の点 $C$ を含まない弧 $AB$ 上に点 $P$ をとり,直線 $BP$ と点 $C$ における $\Omega$ の接線の交点を $Q$ とし,直線 $AP$ と線分 $CQ$ の交点を $R$ とすると以下が成立しました.
$$BC=40,\quad BP=14,\quad QR=9$$
このとき線分 $AP$ の長さの $2$ 乗を解答してください.

解答形式

答えは正の整数値となるので,その整数値を半角で入力してください

KOTAKE杯007(O)

MrKOTAKE 自動ジャッジ 難易度:
3日前

17

問題文

$AB<AC$ を満たす鋭角三角形 $ABC$ があり,点$A,B,C$ から対辺におろした垂線の足をそれぞれ $D,E,F$ とします.半直線 $EF$ と直線 $BC$ の交点を $P$ とすれば,
$$AC=BP,\quad BD=60,\quad CD=92$$
が成立したので線分 $AB$ の長さの $2$ 乗を解答してください.

解答形式

答えは正の整数値となるので,その整数値を半角で入力してください.

KOTAKE杯007(H)

MrKOTAKE 自動ジャッジ 難易度:
3日前

28

問題文

$AB=15,AC=20$ の鋭角三角形 $ABC$ があり,辺 $AC$ 上に $AB=AD$ となる点 $D$ をとります.線分 $BD$ の中点を $M$ とすると三角形 $ADM$ の外接円は直線 $CM$ に点 $M$ で接したので線分 $BC$ の長さの $2$ 乗を解答してください.

解答形式

答えは正の整数値となるので,その整数値を半角で入力してください.

KOTAKE杯007(G)

MrKOTAKE 自動ジャッジ 難易度:
3日前

26

問題文

三角形 $ABC$ があり重心を $G$ とし,辺 $AB,AC$ の中点をそれぞれ $M,N$ とします.辺 $BC$ 上に点 $P$ をとると $4$ 点$BMGP$ ,$4$ 点 $CNGP$ はそれぞれ共円であり,
$$BP=3,\quad CP=5$$
が成立したので線分 $AP$ の長さの $2$ 乗を解答してください.

解答形式

答えは正の整数値となるので,その整数値を半角で入力してください.

KOTAKE杯007(K)

MrKOTAKE 自動ジャッジ 難易度:
3日前

12

問題文

$\angle A$ が鈍角である内接四角形 $ABCD$ があり,三角形 $ABD$ の内接円と $AB,AD$ の接点をそれぞれ $P,Q$ とし,三角形 $BCD$ の内接円と $BC,CD$ の接点をそれぞれ $R,S$ とします.三角形 $ABD$ における $\angle A$ 内の傍接円と直線 $AB$ の接点を $T$ とすると,以下が成立しました.
$$BT=BR,\quad PR=6,\quad QS=7,\quad BD=9$$
このとき三角形 $BPR$ の面積の $2$ 乗を解答してください.

解答形式

答えは正の整数値となるので,その整数値を半角で入力してください.