OMCっぽい問題8(A分野・多分100点)

Shota_1110 自動ジャッジ 難易度: 数学 > 競技数学
2025年11月10日20:52 正解数: 7 / 解答数: 12 (正答率: 58.3%) ギブアップ数: 0

問題文

$ $ $0$ 以上 $9$ 以下の整数 $a, b, c, d$ に対し,数列 $(x_0, x_1, ..., x_{1110})$ を次のように定めます:

  • $x_0 = a$ である.
  • $(x_0, x_1, ..., x_{10})$ は公差 $b$ の等差数列をなす.
  • $(x_{10}, x_{11}, ..., x_{110})$ は公差 $c$ の等差数列をなす.
  • $(x_{110}, x_{111}, ..., x_{1110})$ は公差 $d$ の等差数列をなす.

$x_{1110}$ のとり得る値の総和を求めて下さい.

解答形式

答えは非負整数値であることが保証されます.半角英数にし,答えとなる非負整数値を入力し解答して下さい.


スポンサーリンク

解答提出

この問題は自動ジャッジの問題です。 解答形式が指定されていればそれにしたがって解答してください。

Discordでログイン Sign in with Google パスワードでログイン

ログインすると? ログインすると、解答・ギブアップをする他に、問題を投稿したり、ランキングで競うことができます。

または


おすすめ問題

この問題を解いた人はこんな問題も解いています

余りを求める

mathken 自動ジャッジ 難易度:
14日前

7

問題文

$86^{48}-64$ を $864$ で割った余りを求めよ。

京大作サーマスガチャ2025 - SR22

Kta 自動ジャッジ 難易度:
46日前

19

問題文

$n^2+78n-79$ を $100$ で割った余りが平方数とならないような最小の正整数 $n$ を求めよ.

解答形式

半角数字で入力してください(数字のみ)。

面積比

taku1729 自動ジャッジ 難易度:
8月前

8

問題文

△ABCについて、Aから直線BCに下ろした垂足をD、点Bから直線CAに下ろした垂足をE、△ABCの垂心をHとしたとき以下が成立しました。$$AH=3,AE=2,AC=5$$△AHB:△HCDは互いに素な自然数a,bを用いてa:bと表せるのでa+bの値を解答してください。

解答形式

半角数字を入力してください。

2026記念問題

kiwiazarashi 自動ジャッジ 難易度:
10日前

14

問題文

ある神社ではおみくじを販売していて、おみくじの内容について次のようなことが分かっています。

・くじは2026本あり、それぞれに運勢が1つ書いてある。
・運勢は7種類あり、大吉、中吉、小吉、凶、大凶、吉、平である。
・(大吉の本数):(中吉の本数)=5:7
・(中吉の本数):(小吉の本数)=9:11
・(小吉の本数):(凶の本数)=7:4
・(凶の本数):(大凶の本数)=11:8
・(吉の本数):(平の本数)=5:2

平の本数を求めてください。

解答形式

答えの数字を半角数字で入力してください。

雑談

ここ3年ぐらい吉しか引いてないです。
(追記)今年も吉だったので4年連続です。

Bar Chart

aa36 自動ジャッジ 難易度:
4月前

12

問題文

$1$ 以上 $8$ 以下の数が $8$ 個あります.$8\times 8$ の白いマス目に,$8$ 個の数を棒グラフとして黒で書き込むことにしました.このとき,このマスから $2\times 2$ の正方形を切り取りとる方法のうち,黒マスがちょうど $2$ マスである方法の数を最初の $8$ 個の数のスコアと呼ぶことにします.$8$ 個の数の選び方 $8^{8}$ 通り全てに対してのスコアの総和を答えてください.

解答形式

末尾に「(通り)」などをつけず,非負整数で答えてください.

200A

Nyarutann 自動ジャッジ 難易度:
5月前

11

問題文

正整数値に対して定義され正整数値をとる関数 $f(x)$ は,任意の正整数 $a, b, c$ において,以下を満たしました.
$$
f(a)+f(b)+f(c)=f(abc)+2
$$また,$f(15)=15$ を満たすとき,$f(2025)$ としてあり得る値の総和を求めてください.

解答形式

半角数字で解答してください.

極大値

Ultimate 自動ジャッジ 難易度:
18月前

7

問題文

次の関数の極大値を求めよ。
y=|x^2-7x+10|+x

解答形式

半角数字でお願いします。

京大作サーマスガチャ2025 - SR18

Kta 自動ジャッジ 難易度:
46日前

2

問題文

任意の正整数 $m$ に対して $n^m-n$ が $10!$ の倍数であるような $10!$ 以下の正整数 $n$ の個数を求めよ.

解答形式

半角数字で入力してください。

第8問

sulippa 採点者ジャッジ 難易度:
7月前

2

設問8

正の数からなる数列 ${a_n}$ が $a_1 > 0$ および漸化式 $a_{n+1} = a_n + \frac{1}{a_n^2}$ ($n \ge 1$) を満たすとき、極限値 $\lim_{n \to \infty} \frac{a_n}{\sqrt[3]{3n}}$ を求めよ。


解答形式

第9問

sulippa 採点者ジャッジ 難易度:
7月前

2

設問9

数列 ${a_n}$ ($a_n \in {0,1,2,3,4}$) が $a_1=1, a_2=1$ および漸化式 $a_{n+2} \equiv a_{n+1} + a_n \pmod{5}$ ($n \ge 1$) を満たすとする。$a_{2025}$ の値を求めよ。

解答形式

例)ひらがなで入力してください。

階乗のシグマと合同式

sulippa 自動ジャッジ 難易度:
8月前

2

問題

$p$を$3$より大きい素数とする
$S=\sum_{k=1}^{p-2} k \cdot (k!) \cdot ((p-k-1)!)$ 
を$p$で割った余りを求めよ。

解答形式

解答は既約分数で表せるので、
1行目に分子、
2行目に分母
を半角で書いてください
分母は1になる場合も書いてください

連立方程式 応用

reito 自動ジャッジ 難易度:
7日前

2

問題文

ab-3c-d^2 = e …①
3cd+d^2+e^2 = abd …②
a+8+2d = b …③
a+11+e = b+3 …④
を全て満たす自然数の組(a,b,c,d,e)のうち、a+b+c+d+eが最小となるようなものを求めよ。

解答形式

a+b+c+d+e の値を半角数字で