$56076923$ の素因数の総和を求めてください. ただし, 重複する素因数は異なるものとして考えます.
例)非負整数を答えてください.
循環小数
Discordでログイン パスワードでログイン
ログインすると? ログインすると、解答・ギブアップをする他に、問題を投稿したり、ランキングで競うことができます。
または
ログインせずに解答する
この問題を解いた人はこんな問題も解いています
非負整数 $n$ に対して, $a_n$ を以下で定めます.$$a_0=1,\quad a_{n+1}=10a_n+4$$ このとき, $a_n$ が累乗数となるような非負整数 $n$ に対して, $a_n$ の総和を求めてください. ただし, 累乗数とは, 自然数 $a$ と$2$ 以上の自然数 $b$ を用いて $a^b$ と表せる数です.
例)整数を答えてください.
正整数 $n$ に対して $n^{10n}$ を $31$ で割ったあまりを $f(n)$ としたとき, $$\sum_{k=1}^{12000} f(k)$$ の値を求めてください.
半角英数字で回答してください.
$p=3, \quad q=5, \quad r=7$
$X = p^q + q^p$ $Y = q^r + r^q$ $Z = r^p + p^r$
$N = X^p + Y^q + Z^r$
このとき、$N$を$105$で割った余りを求めよ。
半角左詰め
$11$ 個の実数 $A_0 , A_1 , \cdots , A_{10} $ が $n=0 , 1 , \cdots , 9$ に対して$$\sum_{k=0}^{10}{A_kk^n}=0$$を満たします. $A_0=1$ のとき, $\sum_{k=0}^{10}{A_kk^{10}}$ の値を求めてください. ただし, $0^0=1$とします.
非負整数を答えてください.
$n$を整数とする。$n^{8}-n^{2}$を割り切る最大の自然数を求めよ。
半角数字で入力してください。
実数$x,y$が $$ \begin{cases} x^2+y^2=1\\ 2x^3+2y^3=1 \end{cases} $$ を満たしているとき,$x+y$ のとりうる値をすべて求めよ.
解答に$sinθ,cosθ$を含む場合は,$cosθ(0<θ<π)$に統一し,記入例にしたがって全て$半角$で解答してください.なお,度数法で解答すると不正解となるので,弧度法を用いてください. 小数などを用いた近似値での解答は不正解となります. 複数の解答がある場合は小さい値から順に上から改行してください.
記入例 3cos(5π/6) 3cos(π/3)
数列{$a_{n}$}を次の条件により定める。 $$ a_{1}=a_{2}=1, a_{n+2}-a_{n+1}+a_{n}=0 (n=1,2,3,...)$$ これについて、次の問いに答えよ。 $(1)$ $a_{3}$を求めよ。 $(2)$ $a_{2025}$を求めよ。 $(3)$ $\sum_{n=1}^{2025}\quad{a_{n}}$を求めよ。
答えのみを半角算用数字で答えてください 例えば(1)の答えが3、(2)の答えが100、(3)の答えが80のときは、 3,100,80 のように答えてください。
$\lim\limits_{n\to\infty} n\sin\frac{2π}{n} = mπ$ である。 $m$の値を求めよ。
$m$は2つの実数$a,b$を使って $\frac{a}{b}$と表せる。 $m$を分母が有理化された既約分数の形にした時の$a+b$を解答すること。
$3^{2025}$を $11$ で割った余りを求めよ。
✕✕
1から2pの2p個の異なる自然数を全て並べる時に隣り合う二つの積が常に偶数になる通りをSpとするとき、それがpで最大何回割れるか答えろ. (ただしpは素数とする)
(半角の自然数が答え)
$1$ 以上 $8$ 以下の数が $8$ 個あります.$8\times 8$ の白いマス目に,$8$ 個の数を棒グラフとして黒で書き込むことにしました.このとき,このマスから $2\times 2$ の正方形を切り取りとる方法のうち,黒マスがちょうど $2$ マスである方法の数を最初の $8$ 個の数のスコアと呼ぶことにします.$8$ 個の数の選び方 $8^{8}$ 通り全てに対してのスコアの総和を答えてください.
末尾に「(通り)」などをつけず,非負整数で答えてください.