$\quad$三角形 $ABC$ において,内心を $I$ ,角 $A$ 内の傍心を $I_A$ ,外心を $O$ とすると,直線 $II_A$ と直線 $IO$ は垂直に交わった.線分 $BC$ の中点を $M$ ,線分 $II_A$ と線分 $BC$ の交点を $K$ とし,三角形 $MKI_A$ の重心を $G$ とすると, $$KM=1,KG=3$$が成立した.このとき,線分 $BC$ の長さを求めよ.
求める値の二乗は互いに素な正の整数 $a,b$ を用いて $\dfrac ab$と表せるので, $a+b$ を半角数字で解答してください.
この問題を解いた人はこんな問題も解いています