$2025$ 以下の正整数 $n$ であって, $$\displaystyle\sum_{j=0}^{n}\displaystyle\sum_{i=j}^{2n-j} {}_{2n-j}C_{i}$$ が $6$ の倍数となるものの総和を求めよ.
半角数字で入力してください。
Discordでログイン パスワードでログイン
ログインすると? ログインすると、解答・ギブアップをする他に、問題を投稿したり、ランキングで競うことができます。
または
ログインせずに解答する
この問題を解いた人はこんな問題も解いています
3以上の正整数 $n$に対し, $$ {}_nC_1, {}_nC_2, \dots, {}_nC_{n-1} $$の $n-1$個の数から $n-2$個を選んだときのそれらの最大公約数を $d$ とする. 全ての選び方について $d$ の総和を $d(n)$とする.100以下の$n$であって, $d(n)\le100$となる $n$の個数を求めよ。
10の倍数でない正の整数 $n$ に対し, $f(n)$は, 十進法表示で $n$ を $1$ の位から逆の順番で読んで得られる正の整数として定めます. たとえば$f(123456789) = 987654321$です. $n+f(n)$が81の倍数となるような十進法で10桁の$n$の個数を解答してください.
本問は大学への数学2024年12月学コン3番に掲載されている自作問題です.
三角形 $ABC$ において,角 $A,B,C $の傍接円の半径をそれぞれ $r_A,r_B,r_C$ とし,内接円の半径を $r $とする.このとき,三角形 $ABC$ が以下の条件を満たすとき$r_A\cdot r_B\cdot r_C \cdot r$の最大値を求めよ. $$BC=28,∠BAC=60 $$
自然数となるので、その値を入力してください
数列 ${a_n}$ は $a_{n+1}=\dfrac{2a_n^2}{8-a_n^2}\ (n=1,2,\dots)$ を満たす. $a_{2025}=-4$ となるような $4$ 以上の実数 $a_1$ の個数を $M$ とするとき,$M$ を素数 $2017$ で割った余りを求めよ.
三角形 $ABC$ について,線分 $BC,CA$ の中点を $M,N$ とし,三角形 $AMN$ の外接円と三角形 $ABC$ の外接円,半直線 $AB$ がそれぞれ $A$ でない点で交わったのでそれぞれを $D, E$ とする.$MD=5, AB=34, BE=7$ が成り立つとき,線分 $BC$ の長さの二乗を解答せよ.
格子点上を,点 $P$ は $(0,2)$ から $(6,8)$ へ,点 $Q$ は $(2,0)$ から $(8,6)$ へ最短経路で進む. このとき,2 本の経路が交差しない(頂点共有もしない)組の総数を求めよ.
例)半角数字で入力してください。
区別できる6個の箱に区別できる球を12個入れる(球が1つも入っていない箱があってもよい). $i$ 番目の箱に入っている玉の数を $A_i$ とする. 入れ方すべてについて,積 $A_1^2 A_2^2\cdots A_6^2$ を計算し,その和を求めよ.
三角形 $T$ の一つの辺の長さは平方数で,残りの辺の長さは素数であるとする.また,$T$ の面積は整数で,外接円の直径は素数であるとする.$T$ の各辺の長さを求めよ.
$T$の3辺の長さの総和としてありうる値の総和を解答してください。(論証は採点できないので、解説を参照してください。)
2018年3月の大学への数学「読者と作るページ」に掲載された問題です。
$n$を正の整数とします。連続する$10$個の整数の積$n(n+1)(n+2)(n+3)…(n+9)$が$2025^3$で割り切れるような$n$としてあり得る最小のものを求めてください。
$n$の値を半角で入力してください。
$1^{2024}+2^{2024}+3^{2024}+4^{2024}+5^{2024}+…+2023^{2024}+2024^{2024}$を$17$で割った余りを求めよ。
元の問題を書き換えて別の問題にしました。前の問題は解いていただけなかったので別の問題に変えました。
余りを自然数でお答えください
下の図において, $\triangle ABC$ と $\triangle BDE$ は二等辺三角形です. さらに, $$\angle ABC=\angle BDE=90^\circ,\hspace{1pc} \angle EBC=60^\circ\\ BC=32, \hspace{1pc} DB=6\sqrt{2}$$ が成立します. 線分 $AE$ の中点を $M$ とするとき, 線分 $DM$ の長さを求めてください. ただし, $E$ は $\triangle ABC$ の内側にあります.
答えは正の整数値となるので, その整数値を半角で入力してください.
$AB<AC$ で,線分 $AB,AC$ の長さが正整数値である三角形 $ABC$ について,半直線 $CB$ 上で線分 $BC$ 上でないところに点 $D$ ,半直線 $BC$ 上で線分 $BC$ 上でないところに点 $E$ をそれぞれ置く.また,三角形 $ADE$ の外接円と直線 $AB,AC$ との交点のうち,$A$ でないほうをそれぞれ $P,Q$ とする.$4$ 点 $B,P,Q,C$ が同一円周上にあり,$DB=9,BC=45,CE=5$ のとき,線分 $PQ$ の長さとしてあり得る値の総和は互いに素な正整数 $a,b$ を用いて $\displaystyle\frac{a}{b}$ と表せるので,$a+b$ を解答してください.