柏陽祭2025 (H)

ulam_rasen 自動ジャッジ 難易度: 数学 > 競技数学
2025年9月20日10:00 正解数: 3 / 解答数: 19 (正答率: 15.8%) ギブアップ不可
初等幾何
この問題はコンテスト「柏陽祭2025」の問題です。

外接円を$\Omega$, 内心を$I$とする鋭角三角形$ABC$について, 円$Γ$は円$\Omega$に内接し, 辺$AC$, 辺$BC$にも接しています. 円$\Gamma$と円$\Omega$, 辺$AC$との接点をそれぞれ$T, D$とし, 直線$TD$と円$\Omega$の交点を$M(\neq T)$, 直線$AI$との交点を$F$, 直線$TI$と直線$AB$, 円$MDI$の交点をそれぞれ$G$, $K(\neq I)$とします. さらに, 円$MDI$内に点$H$をとったところ, これは円$TAK$上にありました. また, 円$GHK$と直線$MK$の交点を$J(\neq K)$とすると, 直線$GJ$, 直線$AK$, 円$TAD$が一点で交わったのでこれを$L$とします.
$$
FG=FH, MJ:KJ=1:3, LJ=30
$$
が成立するとき, 線分$IK$の長さを二乗した値を求めてください.


スポンサーリンク

解答提出

この問題は自動ジャッジの問題です。 解答形式が指定されていればそれにしたがって解答してください。

Discordでログイン Sign in with Google パスワードでログイン

ログインすると? ログインすると、解答・ギブアップをする他に、問題を投稿したり、ランキングで競うことができます。

または


おすすめ問題

この問題を解いた人はこんな問題も解いています

柏陽祭2025 (G)

ulam_rasen 自動ジャッジ 難易度:
11日前

8

正三角形$ABC, DEF$について, 三点$A, F, E$がこの順に同一直線上に並んでいます. また, 線分$AD$と線分$BE$の交点が存在したのでこれを$X$とすると三点$F, C, X$はこの順に同一直線上に並びました. 直線$BC$と直線$AE$の交点を$Y$としたとき, 以下が成立しました.
$$
\angle CAE=\angle BEA, AD=AY, DX=1
$$
このとき, 線分$AD$の長さの値の最小多項式を$f$とします. $f(5)$の値を求めてください.


最小多項式とは

$m$を根にもつ有理数係数多項式のうち, 次数が最小であり, かつ最高次の係数が$1$であるものを(このようなものは一意に存在します), $m$の最小多項式とよびます.

柏陽祭2025 (F)

ulam_rasen 自動ジャッジ 難易度:
11日前

12

$AB>AC$を満たす鋭角三角形$ABC$の外接円を$Ω$, 辺$BC$の中点を$M$とします. 点$B,C$から対辺に下した垂線の足をそれぞれ$E, F$とし, 直線$EF$と$Ω$の交点を$P, Q$とします. ただし, 四点$P, E, F, Q$はこの順に並ぶものとします. 円$MEF$と直線$MQ$の交点を$L(\neq M)$としたところ直線$AL$と直線$PM$が$Ω$上で交わりました.
$$
QL=PM=20
$$

が成立するとき, 線分$AP$の長さを二乗した値を求めてください.

柏陽祭2025 (D)

ulam_rasen 自動ジャッジ 難易度:
11日前

20

問題文

$AB>AC$を満たす鋭角三角形$ABC$の外心を$O$, $\angle BAC$の二等分線と直線$BO$の交点を$D$とします.
円$ABC$について弧$BAC$の中点を$M$とし, 直線$AB$と直線$CM$の交点を$E$とすると以下が成り立ちました.
$$
\angle ADE=\angle AME, AE=25, BE=96
$$
このとき, 辺$AC$の長さは互いに素な正整数 $a,b$ を用いて$\Large\frac{a}{b}$と表せるので $a+b$ の値を解答してください.

柏陽祭2025 (E)

ulam_rasen 自動ジャッジ 難易度:
11日前

13

半径が$14$の円$Ω$に内接し, $AB>AC$を満たす鋭角三角形$ABC$について, 内心を$I$, $A$傍心を$J$とする. 辺$AJ$の垂直二等分線と$Ω$の交点の内, 点$C$側にあるものを$D$, $B$側にあるものを$E$とし, 三角形$JBC$の外接円と三角形$JDE$の外接円の交点を$X(\neq J)$としたところ, 以下が成り立った.
$$
CX:CD=8:3, AI=10
$$

辺$BC$と辺$DE$の交点を$F$としたときの線分$XF$の長さの二乗を求めてください.

幾何

katsuo_temple 自動ジャッジ 難易度:
38日前

4

問題文

三角形$ABC$において,$A,B,C$から対辺に下ろした垂線の足をそれぞれ$D,E,F$とし,垂心を$H$とします.三角形$DEF$の外接円と三角形$HBC$の外接円の交点を$P,Q$とし,$EF$の中点を$M$とします.直線$HM$と直線$PQ$の交点を$R$とすると,$DR$は$AB$の中点を通り,$BC$の中点を$N$とすると,$$ND=2 CE=5$$が成立しました.このとき,$AB$の長さの二乗は互いに素な正整数$a,b$を用いて$\dfrac{a}{b}$と表せるので,$a +b$の値を解答して下さい.

解答形式

半角で解答して下さい.

柏陽祭2025 (C)

ulam_rasen 自動ジャッジ 難易度:
11日前

61

鋭角三角形$ABC$について, 外接円を$Ω$, 垂心を$H$, 辺$BC$の中点を$M$, 点$H$から直線$AM$に下ろした垂線の足を$K$とします. 直線$BH, CH$と$Ω$の交点をそれぞれ$E(\neq B), F(\neq C)$とし, 線分$EF$の中点を$N$とします. さらに, 辺$AC$上(端点を除く)に点$P$をとると以下が成立しました.
$$
\triangle FNP \backsim \triangle AMC, \angle PFA=\angle BAM, BK=5
$$

このとき, 線分$PE$の長さの二乗としてありうる値の総和を求めてください.

Twin circles

Hapican_ 自動ジャッジ 難易度:
39日前

16

問題文

$AB>AC$ を満たす鋭角三角形 $ABC$ において、$\angle A$ の二等分線と $BC$ の交点を $D$ とする。線分 $AD$ 上に $AP:PD=AB:BC, AQ:QD=AC:CB$ を満たす点 $P,Q$ をとり、$AC$上に点 $R$ 、$AB$上に点 $S$ を $BC//PR//QS$ を満たすようにおいた。$\triangle APR$ の外接円と $\triangle AQS$ の外接円の交点を $T(\neq A)$ 、$\triangle BCT$ の内心を $I$ 、直線 $ RS $ と直線 $BI$ ,直線 $CI$ の交点を $U,V$ 、線分 $BC$ ,線分 $UV$ の中点を $M,N$ としたところ$$MN=5,UV=16$$であった。$\triangle BCT$ の内接円の半径が $2$ のとき、$IT$ の長さを求めよ。

解答形式

求める値の二乗は互いに素な自然数 $p,q$ を用いて $\frac{p}{q}$と表せるので、 $p+q$ の値を答えてください。

p3

lamenta 自動ジャッジ 難易度:
40日前

3

問題文

$\quad$鋭角三角形 $ABC$ において, $B$ を通り直線 $AC$ に平行な直線上に点 $P$ を, $C$ を通り直線 $AB$ に平行な直線上に点 $Q$ をそれぞれとると, $A,P,Q$ はすべて直線 $BC$ に関して同じ方にあり, $\angle APB=\angle AQC$ が成立した.また,三角形 $PAB$ の外接円と三角形 $QAC$ の外接円が再び交わる点を $X$ とし,直線 $PQ$ と直線 $BX,CX$ の交点をそれぞれ $R,S$ とすると,
$$\cos\angle BXC=\frac 15,CX-BX=5,XR:XS=5:3$$が成立した.さらに,線分 $BC$ の中点を $M$ ,直線 $AX$ と三角形 $PXQ$ の外接円が再び交わる点を $T$ とし,三角形 $TPQ$ の内心を $I$ とすると,直線 $AX$ と直線 $MI$ は平行であった.このとき,線分 $XI$ の長さを求めよ.

解答形式

求める値の二乗は互いに素な正の整数 $a,b$ を用いて $\dfrac ab$と表せるので, $a+b$ を半角数字で解答してください.

柏陽祭2025 (B)

ulam_rasen 自動ジャッジ 難易度:
11日前

39

辺$AB$と辺$BC$と辺$CD$の長さが等しい凸四角形$ABCD$について, 辺$BC$と辺$AD$の中点をそれぞれ$M$, $N$としたところ, 以下が成り立ちました.
$$
\angle BAD=75°, \angle CDA=45°, MN=3
$$

このとき, 四角形$ABCD$の面積は正整数$a, b$を用いて$a+\sqrt{b}$ と表すことができるので, $a+b$ の値を求めてください.

Maximize Next

GaLLium31 自動ジャッジ 難易度:
39日前

22

問題文

実数係数多項式で次数が $9999$ 以下の $P(x)$ について,$(P(1),P(2), \dotsc P(10000))$ が $(1,2, \dotsc 10000)$ の並べ替えであるとき,$P(10001)$ が考えられる最大値をとるような $P(x)$ の個数を素数 $9973$ で割ったあまりを解答してください.

解答形式

半角数字で解答してください.

bMC_H

bzuL 自動ジャッジ 難易度:
14月前

16

問題文

正の実数に対して定義され,正の実数値を取る関数 $f$ であって,任意の正の実数 $x,y$ に対して,
$$
f(x)f(yf(x))=2024f(x+2024y)
$$
を満たすもののうち, $f(1)$ が整数になるものについて,$f(2)$ の整数部分としてありうる数はいくつありますか.

解答形式

半角数字で解答してください.

Yaocho nyokki (Hard)

GaLLium31 自動ジャッジ 難易度:
39日前

27

問題文

$30$ 人の人が $\pi$ ナポゥ君の主催するたけのこニョッキ大会に参加します.ルールは次の通りです.

  • $i=30,29, \dotsc,1$ の順に $1$ 人 $1$ つの数 $i$ を叫んでいき,最後まで叫ぶことができたら成功である.もし $i$ を複数人が叫んでしまったり,だれも叫ばなかったりした場合は失敗である.

なかなか成功しないことに気づいた $\pi$ ナポゥ君は,次のように八百長をすることにしました.

  • はじめに $30$ 人それぞれに正整数を与え,$i=30,29,\dotsc,1$ について以下を繰り返す.
    • まだ叫んでいない人の内,与えられた数が $i$ の約数もしくは倍数である人は,数 $i$ を叫ぶ.

このたけのこニョッキが成功するような,$30$ 人に与えられる正整数の総和の最小値を解答して下さい.

解答形式

半角数字で解答してください.