E

nmoon 自動ジャッジ 難易度: 数学 > 競技数学
2025年10月3日12:30 正解数: 14 / 解答数: 20 (正答率: 70%) ギブアップ不可
この問題はコンテスト「Nyannyan Math Contest 003 (NMC003)」の問題です。

全 20 件

回答日時 問題 解答者 結果
2025年10月4日11:33 E DY_math
正解
2025年10月4日11:14 E DY_math
不正解
2025年10月3日22:28 E Germanium32
不正解
2025年10月3日22:26 E Germanium32
不正解
2025年10月3日21:59 E Nyarutann
正解
2025年10月3日21:59 E natsuneko
正解
2025年10月3日19:53 E SuamaX
正解
2025年10月3日19:50 E SuamaX
不正解
2025年10月3日19:50 E SuamaX
不正解
2025年10月3日19:18 E epsug
正解
2025年10月3日19:03 E MARTH
正解
2025年10月3日19:03 E MARTH
正解
2025年10月3日19:01 E Weskdohn
正解
2025年10月3日19:00 E rakki
正解
2025年10月3日17:07 E arararororo
正解
2025年10月3日17:07 E arararororo
不正解
2025年10月3日16:08 E wasab1
正解
2025年10月3日16:01 E tomorunn
正解
2025年10月3日14:44 E ZIRU
正解
2025年10月2日23:46 E pomodor_ap
正解

おすすめ問題

この問題を解いた人はこんな問題も解いています

C

nmoon 自動ジャッジ 難易度:
4日前

40

問題文

nmoon君は黒板に $60$ の正の約数を一つずつ全て書き込みます.そして,以下の操作をできなくなるまで行います.

  • 黒板に書かれた $2$ つの正の整数 $x,y$ について,黒板から $x,y$ を消し,$x,y$ の最大公約数と最小公倍数を黒板に書き込む.但し,このとき,操作前と操作後での黒板に書かれた数が,重複を許して全て一致することはないようにする.

全ての操作が終了したとき,黒板に書かれた数の総和としてあり得る値の総和を求めてください.

解答形式

正整数で答えてください.

D

nmoon 自動ジャッジ 難易度:
4日前

37

問題文

$0$ 以上 $1$ 以下の実数 $a_{1} , a_{2} , a_{3}$ について,以下の値の最大値を求めてください.

$$a_{1} + 2a_{2} +3a_{3} +4\sqrt{a_{1}(1-a_{1}) + a_{2}(1-a_{2}) + a_{3}(1-a_{3})}$$

解答形式

求める値を $M$ としたとき,$10000M$ の整数部分を解答してください.

B

nmoon 自動ジャッジ 難易度:
4日前

50

問題文

以下の式を満たす正の整数の組 $(m,n)$ 全てについて,$m + n$ の総和を求めてください.

$$(mn - 1)^2 + (m + n)^2 = 650$$

解答形式

正整数で答えてください.

A

nmoon 自動ジャッジ 難易度:
4日前

39

問題文

正三角形 $ABC$ の内部に点 $P$ をとったところ,以下が成立しました.

$$AP = 10 , BP = 14 , CP = 16$$

このとき,正三角形 $ABC$ の面積を求めて下さい.

解答形式

求める値を $2$ 乗した値は正整数となるので,その値を求めて下さい.

PDC009 (D)

pomodor_ap 自動ジャッジ 難易度:
6日前

21

問題文

$$x^4-xy^3+y^2=11, x^3y-y^4+x^2=13$$ を満たす複素数の組 $(x,y)$ について,$\dfrac{y}{x}$ としてありうる値の総和は互いに素な正の整数 $a,b$ を用いて $\dfrac{a}{b}$ と表せるので,$a+b$ を解答せよ.

ABC(G)

atawaru 自動ジャッジ 難易度:
8日前

35

問題文

$1000$ の正の約数の集合を $D$ とします.また,$999$ 次方程式

$$x^{999}+x^{998}+\dots+x+1=0$$

の $999$ 個の解を $x=x_1,x_2,\dots,x_{999}$ とします.このとき,

$$\sum_{d\in D}^{}\sum_{s=1}^{999} x_s^d$$

の値を求めてください.

解答形式

答えは非負整数値となるので,それを半角で解答してください.

PDC009 (F)

pomodor_ap 自動ジャッジ 難易度:
6日前

16

問題文

三角形 $ABC$ について,線分 $BC,CA$ の中点を $M,N$ とし,三角形 $AMN$ の外接円と三角形 $ABC$ の外接円,半直線 $AB$ がそれぞれ $A$ でない点で交わったのでそれぞれを $D, E$ とする.$MD=5, AB=34, BE=7$ が成り立つとき,線分 $BC$ の長さの二乗を解答せよ.

ABC(F)

atawaru 自動ジャッジ 難易度:
8日前

48

問題文

$2$ 以上の整数 $n$ のうち,次の条件を満たすものはいくつありますか?

  • $n$ の $k$ 個の正の約数を小さい順に $d_1,d_2,\dots,d_k$ としたとき,任意の $1$ 以上 $k-1$ 以下の整数 $i$ について $d_{i+1}-d_i\leq40$ が成立する.

解答形式

答えは非負整数値となるので,それを半角で解答してください.

ABC(H)

atawaru 自動ジャッジ 難易度:
8日前

24

問題文

$n$ を $3$ 以上の奇数とします.いま,円に内接する凸 $n$ 角形 $P_1P_2\dots P_n$ があり,$k=1,2,\dots,n$ について角 $P_k$ の大きさを ${a_k}^{\circ}$ としたところ,

$$\sum_{k=1}^{\frac{n-1}{2}}a_{2k}=7777$$

が成立しました.このとき,度数法での角 $P_1P_2P_n$ の大きさとして考えられる値の総和を解答してください.

解答形式

答えは非負整数値となるので,それを半角で解答してください.

bMC_G

bzuL 自動ジャッジ 難易度:
14月前

19

問題文

$1,\ldots,2024$ の並べ替え $a_1,\ldots,a_{2024}$ に対して,スコア
$$
\sum_{k=1}^{2024} (2024a_k-k-1)(a_k-2024k)
$$
で定めます.$2024!$ 通りの並べ替えに対して,スコアとしてあり得る値はいくつありますか.

解答形式

半角数字で解答してください.

1100

shakayami 自動ジャッジ 難易度:
6月前

28

問題文

$a, b$ を非負整数とします。xy平面上の点 $(0, 0)$から点 $(a, b)$まで、$x$ 軸正方向に1進むか、$y$ 軸正方向に1進むかで到達するための道の数を $C(a, b)$ とします。

$0 \leq a < 1100 $ かつ $0 \leq b < 1100 $ であるような非負整数組 $(a, b)$ であって、$C(a, b)$ が奇数であるようなものの個数を答えてください。

解答形式

答えは非負整数なので,その数値を回答してください.OMCと同じです.

C

nmoon 自動ジャッジ 難易度:
11月前

15

問題文

三角形 $ABC$ の外心を $O$,垂心を $H$,外接円を $\Gamma$ とする.そして,以下のように点を4つとる.

  • 直線 $BH$ と $\Gamma$ との交点を $P(\not=B)$ とする.
  • 直線 $PO$ と $\Gamma$ との交点を $Q(\not=P)$ とする.
  • 直線 $QH$ と $\Gamma$ との交点を $R(\not=Q)$ とする.
  • 直線 $RO$ と $\Gamma$ との交点を $S(\not=R)$ とする.

このとき,3点 $ C,H,S$ が同一直線上にあった.

$$AH=17 , AO=11$$

のとき,三角形 $ABC$ の面積を求めてください.

解答形式

答えを2乗した値は,互いに素な2つの正整数 $a,b$ を用いて $\displaystyle\frac{a}{b}$ と表されるので,$a+b$ を求めてください.