鋭角三角形$ABC$について,その垂心を$H$,外心を$O$,線分$AB$,$BC$,$CA$の中点をそれぞれ$L,M,N$とします.円$OMN$と直線$LN,LO,LM$の交点のうち,$N,O,M$でないほうをそれぞれ$P,Q,R$とすると以下が成立しました.
$$
AH=6,LN=4, PC\perp CR.
$$
この時,線分$OQ$の長さの二乗の値は互いに素な正の整数$a,b$を用いて$\frac ab$と表せるので$a+b$を回答してください.
この問題を解いた人はこんな問題も解いています