$100\times100$ のマス目に $1,2,3$ のどれかの数字をそれぞれ書き込む方法は $3^{10000}$ 通りありますが,そのうちどの $3\times3$ マスを選んでも縦横斜め $3$ マスの数字の総和が $3$ の倍数になるような書き込み方は何通りありますか。ただし,回転や反転して一致するものも異なるものとして数える。
Discordでログイン パスワードでログイン
ログインすると? ログインすると、解答・ギブアップをする他に、問題を投稿したり、ランキングで競うことができます。
または
ログインせずに解答する
この問題を解いた人はこんな問題も解いています
$99989796…090807060504030201$を$97$で割った余りを求めてください.
関数$A(n),B(n)$を $$ A(n)=(1\le x \le nを満たす1001と互いに素な整数xの個数)\\ B(n)=(n\le x \le 1001を満たす1001と互いに素な整数xの個数) $$ と定めるとき,次の値を求めてください. $$ \sum_{n=1}^{1000}\quad \frac{A(n)^2}{A(n)-B(n)} $$
正整数 $a,b$ であって以下が整数になるようなすべての組 $(a,b)$ について $ab$ の総和を求めてください $$ \frac{(3ab+2a+4b-6)^2}{13(a^2b^2+a^2+4b^2+4)} $$
以下の式の値を $1000$ で割った余りを答えよ $$ 47!\sum_{k=1}^{45}\ \frac{2k^{3}+7k^{2}+5k-3}{(k+2)!} $$
正整数で回答してください
正整数列 $A_{n}$ を以下のように定義する $$ 1個の2 以上の正整数を要素に持ち,それらの総積が n に等しい $$ この時 $A_{2^{100}}$ としてありうる数列すべてについて,その要素の 総和を $97$ で割った余りを答えてください。 ただし,並び替えて一致するものも別々として数える。 例えば $A_{8}$ としてありうるものは $\lbrace8\rbrace,\lbrace2,4\rbrace, \lbrace4,2\rbrace, \lbrace2,2,2\rbrace$ でありその要素の総和は $8+2+4+4+2+2+2+2=26$ である。
正整数で答えてください
複素数$\alpha,\beta,\gamma$が $$\begin{cases} \alpha+\beta+\gamma=9\\ \alpha^2+\beta^2+\gamma^2=25\\ \alpha^3+\beta^3+\gamma^3=2025 \end{cases}$$ を満たしています。このとき、$f(x)=0$ が $\alpha,\beta,\gamma $を解に持ち、かつ最高次係数が $1$ であるような $3$ 次関数 $f(x)$ が一意に存在するので、$❘f(2)❘$ を求めてください。
解答は正の整数値になるので、その値を解答してください
相異なる $1$ 以上 $9$ 以下の整数の組 ($A,E,M,S,T,U,Y$) が以下の覆面算を満たしています
$$\begin{array}{rr} & MATU \\ + & YAMA \\ \hline & EAST \end{array}$$ このとき、$EAST$ としてありうる値を見つけてください。
$EAST$ としてありうる値が$3$つ存在するので、それらの総和を解答してください。
横一列に並んだ $14$ 個のオセロの石があります.そして,以下の操作を何度か行い,黒面を向いた石の個数をできるだけ少なくします.
全ての操作の終了後に黒面を向く石の個数を スコア とします.最初の石の配色は $2^{14}$ 通りありますが,これら全ての場合においてスコアの総和を求めてください. 但し,オセロの石は,片方が黒面で,もう片方が白面であるとする.
正整数で答えてください.
$1000$ の正の約数の集合を $D$ とします.また,$999$ 次方程式
$$x^{999}+x^{998}+\dots+x+1=0$$
の $999$ 個の解を $x=x_1,x_2,\dots,x_{999}$ とします.このとき,
$$\sum_{d\in D}^{}\sum_{s=1}^{999} x_s^d$$
の値を求めてください.
答えは非負整数値となるので,それを半角で解答してください.
鋭角三角形$ABC$について,その垂心を$H$,外心を$O$,線分$AB$,$BC$,$CA$の中点をそれぞれ$L,M,N$とします.円$OMN$と直線$LN,LO,LM$の交点のうち,$N,O,M$でないほうをそれぞれ$P,Q,R$とすると以下が成立しました. $$ AH=6,LN=4, PC\perp CR. $$ この時,線分$OQ$の長さの二乗の値は互いに素な正の整数$a,b$を用いて$\frac ab$と表せるので$a+b$を回答してください.
以下のように点 $O$ を中心とする円周上に三角形 $ABC$ が内接しています。この円の内部に点 $D$ を取ると、$AB=BC=AO=4,\angle BAD=90°$ が成り立ち、さらに三角形 $AOD$ の面積は $3\sqrt{3}$ でした。このときの線分 $CD$ の長さの $2$ 乗を求めてください。
解答は正の整数値になるので、その値を半角数字で解答してください
一辺の長さが $4$ の正三角形を、以下のように一辺の長さが $1$ の小正三角形 $16$ 個に分割します。 東くんがこの小正三角形それぞれに $0,1,2$ のいずれか一つを書き込むと、辺を共有して隣り合う $2$ つの小正三角形に書かれた数の差(の絶対値)はすべて $1$ でした。 このように東くんが書き込む方法は何通りありますか?ただし裏返しや回転によって一致する書き込み方も区別します。
半角数字で解答してください