TMC001(C)

OooPi 自動ジャッジ 難易度: 数学 > 競技数学
2025年10月11日13:00 正解数: 12 / 解答数: 17 (正答率: 70.6%) ギブアップ不可
この問題はコンテスト「TMC001」の問題です。

$100\times100$ のマス目に $1,2,3$ のどれかの数字をそれぞれ書き込む方法は $3^{10000}$ 通りありますが,そのうちどの $3\times3$ マスを選んでも縦横斜め $3$ マスの数字の総和が $3$ の倍数になるような書き込み方は何通りありますか。ただし,回転や反転して一致するものも異なるものとして数える。


スポンサーリンク

解答提出

この問題は自動ジャッジの問題です。 解答形式が指定されていればそれにしたがって解答してください。

Discordでログイン Sign in with Google パスワードでログイン

ログインすると? ログインすると、解答・ギブアップをする他に、問題を投稿したり、ランキングで競うことができます。

または


おすすめ問題

この問題を解いた人はこんな問題も解いています

TMC001(A)

hya_math 自動ジャッジ 難易度:
3月前

95

$99989796…090807060504030201$を$97$で割った余りを求めてください.

TMC001(B)

hya_math 自動ジャッジ 難易度:
3月前

15

関数$A(n),B(n)$を
$$
A(n)=(1\le x \le nを満たす1001と互いに素な整数xの個数)\\
B(n)=(n\le x \le 1001を満たす1001と互いに素な整数xの個数)
$$
と定めるとき,次の値を求めてください.
$$
\sum_{n=1}^{1000}\quad \frac{A(n)^2}{A(n)-B(n)}
$$

TMC001(D)

OooPi 自動ジャッジ 難易度:
3月前

9

正整数 $a,b$ であって以下が整数になるようなすべての組 $(a,b)$ について $ab$ の総和を求めてください
$$
\frac{(3ab+2a+4b-6)^2}{13(a^2b^2+a^2+4b^2+4)}
$$

問題9

Mid_math28 自動ジャッジ 難易度:
4月前

38

問題文

複素数$\alpha,\beta,\gamma$が
$$\begin{cases}
\alpha+\beta+\gamma=9\\
\alpha^2+\beta^2+\gamma^2=25\\
\alpha^3+\beta^3+\gamma^3=2025
\end{cases}$$
を満たしています。このとき、$f(x)=0$ が $\alpha,\beta,\gamma $を解に持ち、かつ最高次係数が $1$ であるような $3$ 次関数 $f(x)$ が一意に存在するので、$❘f(2)❘$ を求めてください。

解答形式

解答は正の整数値になるので、その値を解答してください

整数問題1

mathken 自動ジャッジ 難易度:
28日前

19

問題文

自然数 $a,b,c$ が互いに異なる自然数であるとき
$$N=(9a-1)^2+9b^2+9c^2=(9a+1)^2-9b^2-9c^2$$と表される自然数 $N$ の最小値を求めよ。

問題7

Mid_math28 自動ジャッジ 難易度:
4月前

32

問題文

相異なる $1$ 以上 $9$ 以下の整数の組 ($A,E,M,S,T,U,Y$) が以下の覆面算を満たしています

$$\begin{array}{rr}
& MATU \\
+ & YAMA \\
\hline
& EAST
\end{array}$$
このとき、$EAST$ としてありうる値を見つけてください。

解答形式

$EAST$ としてありうる値が$3$つ存在するので、それらの総和を解答してください。

ABC(G)

atawaru 自動ジャッジ 難易度:
4月前

38

問題文

$1000$ の正の約数の集合を $D$ とします.また,$999$ 次方程式

$$x^{999}+x^{998}+\dots+x+1=0$$

の $999$ 個の解を $x=x_1,x_2,\dots,x_{999}$ とします.このとき,

$$\sum_{d\in D}^{}\sum_{s=1}^{999} x_s^d$$

の値を求めてください.

解答形式

答えは非負整数値となるので,それを半角で解答してください.

問題3

Mid_math28 自動ジャッジ 難易度:
4月前

44

問題文

以下のように点 $O$ を中心とする円周上に三角形 $ABC$ が内接しています。この円の内部に点 $D$ を取ると、$AB=BC=AO=4,\angle BAD=90°$ が成り立ち、さらに三角形 $AOD$ の面積は $3\sqrt{3}$ でした。このときの線分 $CD$ の長さの $2$ 乗を求めてください。

解答形式

解答は正の整数値になるので、その値を半角数字で解答してください

問題4

Mid_math28 自動ジャッジ 難易度:
4月前

36

問題文

一辺の長さが $4$ の正三角形を、以下のように一辺の長さが $1$ の小正三角形 $16$ 個に分割します。
東くんがこの小正三角形それぞれに $0,1,2$ のいずれか一つを書き込むと、辺を共有して隣り合う $2$ つの小正三角形に書かれた数の差(の絶対値)はすべて $1$ でした。
このように東くんが書き込む方法は何通りありますか?ただし裏返しや回転によって一致する書き込み方も区別します。

解答形式

半角数字で解答してください

TMC001(F)

OooPi 自動ジャッジ 難易度:
3月前

12

問題文

以下の式の値を $1000$ で割った余りを答えよ
$$
47!\sum_{k=1}^{45}\
\frac{2k^{3}+7k^{2}+5k-3}{(k+2)!}
$$

解答形式

正整数で回答してください

TMC001(H)

OooPi 自動ジャッジ 難易度:
3月前

11

問題文

正整数列 $A_{n}$ を以下のように定義する
$$
1個の2 以上の正整数を要素に持ち,それらの総積が n に等しい
$$  この時 $A_{2^{100}}$ としてありうる数列すべてについて,その要素の
総和を $97$ で割った余りを答えてください。
  ただし,並び替えて一致するものも別々として数える。
例えば $A_{8}$ としてありうるものは $\lbrace8\rbrace,\lbrace2,4\rbrace, \lbrace4,2\rbrace, \lbrace2,2,2\rbrace$ でありその要素の総和は $8+2+4+4+2+2+2+2=26$ である。

解答形式

正整数で答えてください

ABC(F)

atawaru 自動ジャッジ 難易度:
4月前

50

問題文

$2$ 以上の整数 $n$ のうち,次の条件を満たすものはいくつありますか?

  • $n$ の $k$ 個の正の約数を小さい順に $d_1,d_2,\dots,d_k$ としたとき,任意の $1$ 以上 $k-1$ 以下の整数 $i$ について $d_{i+1}-d_i\leq40$ が成立する.

解答形式

答えは非負整数値となるので,それを半角で解答してください.