PDC011 (C)

poinsettia 自動ジャッジ 難易度: 数学
2025年10月29日21:00 正解数: 11 / 解答数: 14 (正答率: 78.6%) ギブアップ数: 1
この問題はコンテスト「PDC011」の問題です。

全 14 件

回答日時 問題 解答者 結果
2025年10月30日20:18 PDC011 (C) natsuneko
正解
2025年10月30日20:17 PDC011 (C) natsuneko
不正解
2025年10月30日18:01 PDC011 (C) ゲスト
不正解
2025年10月29日23:38 PDC011 (C) cocoa_math
正解
2025年10月29日23:19 PDC011 (C) DY_math
正解
2025年10月29日22:16 PDC011 (C) shoko_math
正解
2025年10月29日22:04 PDC011 (C) Nickname
正解
2025年10月29日21:37 PDC011 (C) crambon
正解
2025年10月29日21:28 PDC011 (C) kinonon
正解
2025年10月29日21:24 PDC011 (C) wasab1
正解
2025年10月29日21:22 PDC011 (C) kinonon
不正解
2025年10月29日21:13 PDC011 (C) epsug
正解
2025年10月29日21:05 PDC011 (C) MARTH
正解
2025年10月29日21:02 PDC011 (C) Americium243
正解

おすすめ問題

この問題を解いた人はこんな問題も解いています

PDC011 (A)

poinsettia 自動ジャッジ 難易度:
1日前

33

問題文

すべての項が素数であるような数列 $a_1, a_2, …, a_N (a_1 \le a_2 \le … \le a_N)$ であり,$a_1^2+a_2^2+…+a_N^2=999$ を満たすもののうち,$N$ が最小のものすべてについて,$a_1+a_2+…+a_N$ の総和を解答せよ.

PDC011 (E)

poinsettia 自動ジャッジ 難易度:
1日前

8

問題文

鋭角三角形 $ABC$ について,垂心を $H$,線分 $BC$ の中点を $M$,直線 $BH$ と $AC$,$CH$ と $AB$ の交点をそれぞれ $E, F$ とし,直線 $AH$ と三角形 $ABC$ の外接円が再び交わる点を $T$,直線 $TM$ と三角形 $ABC$ の外接円の交点を $S$,直線 $BS$ と $HC$ の交点を $X$,直線 $TM$ と $AC$ の交点を $Y$ とすると,
$$BH=HE, AH=9, XY=7$$
が成立した.このとき,線分 $BC$ の長さの二乗を解答せよ.

PDC011 (B)

poinsettia 自動ジャッジ 難易度:
1日前

21

問題文

三角形 $ABC$ について,外接円と $\angle A$ の二等分線が再び交わる点を $M$,線分 $AM$ と $BC$ の交点を $D$,$\angle AMC$ の二等分線と線分 $BC,AC$ の交点をそれぞれ $E,F$ とすると,$DE=9, AF=16, AB=20$ が成立した.線分 $BC$ の長さを求めよ.

bMC_G

bzuL 自動ジャッジ 難易度:
15月前

19

問題文

$1,\ldots,2024$ の並べ替え $a_1,\ldots,a_{2024}$ に対して,スコア
$$
\sum_{k=1}^{2024} (2024a_k-k-1)(a_k-2024k)
$$
で定めます.$2024!$ 通りの並べ替えに対して,スコアとしてあり得る値はいくつありますか.

解答形式

半角数字で解答してください.

C

nmoon 自動ジャッジ 難易度:
27日前

40

問題文

nmoon君は黒板に $60$ の正の約数を一つずつ全て書き込みます.そして,以下の操作をできなくなるまで行います.

  • 黒板に書かれた $2$ つの正の整数 $x,y$ について,黒板から $x,y$ を消し,$x,y$ の最大公約数と最小公倍数を黒板に書き込む.但し,このとき,操作前と操作後での黒板に書かれた数が,重複を許して全て一致することはないようにする.

全ての操作が終了したとき,黒板に書かれた数の総和としてあり得る値の総和を求めてください.

解答形式

正整数で答えてください.

D

nmoon 自動ジャッジ 難易度:
27日前

37

問題文

$0$ 以上 $1$ 以下の実数 $a_{1} , a_{2} , a_{3}$ について,以下の値の最大値を求めてください.

$$a_{1} + 2a_{2} +3a_{3} +4\sqrt{a_{1}(1-a_{1}) + a_{2}(1-a_{2}) + a_{3}(1-a_{3})}$$

解答形式

求める値を $M$ としたとき,$10000M$ の整数部分を解答してください.

PDC011 (D)

poinsettia 自動ジャッジ 難易度:
1日前

29

問題文

$900$ 個の白丸が円形に並んでいる.ここから次の条件を満たすようにいくつかの丸 ($1$ つ以上) を黒く塗る方法は何通りあるか?

  • 黒く塗られた丸がランダムで一つ選ばれ,また $1$ 以上 $450$ 以下の整数 $k$ がランダムで与えられる.この時,これらがどのように選ばれても,選ばれた丸から時計回りと反時計回りに $k$ 個先の丸の少なくとも一方は黒く塗られている.

PDC008.5 (D)

poinsettia 自動ジャッジ 難易度:
2月前

27

問題文

円に内接する四角形 $ABCD$ について,線分 $AC$ はその直径をなす.線分 $BD$ の中点を $M$ とすると $AM=AD, BD=12, CD=13$ が成立した.線分 $BC$ の長さの二乗を求めよ.

E

nmoon 自動ジャッジ 難易度:
27日前

21

問題文

横一列に並んだ $14$ 個のオセロの石があります.そして,以下の操作を何度か行い,黒面を向いた石の個数をできるだけ少なくします.

  • 連続して並んだ $4$ 個の石を選んで,左から $1,2,4$ 個目の石を全て裏返す.

全ての操作の終了後に黒面を向く石の個数を スコア とします.最初の石の配色は $2^{14}$ 通りありますが,これら全ての場合においてスコアの総和を求めてください.
 但し,オセロの石は,片方が黒面で,もう片方が白面であるとする.

解答形式

正整数で答えてください.

PDC009 (C)

poinsettia 自動ジャッジ 難易度:
30日前

28

問題文

正の整数 $n$ について,$f(n)$ で $n$ の正の約数であり,$n$ の最小の素因数を素因数に持たないようなもののうち最大のものを表す.例えば,$f(2\times 3^2)=3^2, f(2\times 3\times 5)=3\times 5$ である.ただし,$f(1)=1$ と扱う.
また,$g(n)$ で $n$ の正の約数 $d$ すべてについて $f(d)$ の総和を表す.
このとき,
$$g(2\times 3\times 7\times 11\times 13\times 17)-g(5\times 7\times 11\times 13\times 17)$$ を求めよ.

PDC009 (E)

poinsettia 自動ジャッジ 難易度:
30日前

27

問題文

$14\times 14$ のマス目に以下のように整数を書き込む.ただし,左から $m$, 上から $n$ 番目のマスを $(m,n)$ で表すものとする.

  • $(1,1)$ に $1$ を,$(1,2)$ と $(2,1)$ に $2$ を書き込む.
  • $k\geq 3$ について,すべてのマスに整数が書き込まれるまで以下を繰り返す: $k-2$ が書き込まれているいずれかのマスと,辺を共有せず頂点のみを共有しているマスであり,まだ整数が書き込まれていないようなものすべてに $k$ を書き込む.

いま,PDC 君は $(m,n)$ にいるとき $(m+1,n), (m,n+1)$ に瞬間移動することができ,またそれ以外の移動をすることができない.あるマスからあるマスへの経路について,全ての訪問したマス(出発地点と到着地点を含む)に書き込まれた数字の総和をスコアとする.
$(1,1)$ から $(14,14)$ まで移動するとき,スコアが最小となるような移動方法はいくつあるか?

bMC_E

bzuL 自動ジャッジ 難易度:
15月前

14

問題文

$10$ 進数での桁和が $2500$ となる正整数であって, $2024$ の倍数となるものうち,最小のものを $M$ とします.$M$ を $10$ 進表記したときの $10^{k-1}$ の位の値を $M_k$ としたとき,$1\leq M_k \leq 8$ を満たす $k$ の総積を $10000000$ で割った余りを答えてください.
ただし,以下の $10^n$ を $2024$ で割った余りに関する表を用いて構いません.

$$
\begin{array}{c:ccccccccc}
n & 3 &4 & 5 & 6 & 7 & 8 & 9 \\
\hline
10^n\pmod{2024} &1000 & 1904 &824& 144 & 1440& 232& 296
\end{array}\\\\
\begin{array}{ccccccccc}
10 & 11& 12 & 13 &14 & 15 & 16 & 17 & 18\\
\hline
936& 1264 & 496 &912 & 1024 &120 &1200 & 1880 & 584
\end{array}\\\\
\begin{array}{ccccccccc}
19 & 20 & 21 & 22 & 23 & 24 &25\\
\hline
1792 & 1728 & 1088 & 760 & 1528 & 1112 & 1000
\end{array}
$$

解答形式

半角数字で解答してください.
たとえば $M=9876543210$ であれば,$M_1=0,M_2=1,\ldots,M_{10}=9$ となるため,$1\leq M_k \leq 8$ を満たす $k$ の総積は $2 \times \cdots \times 9= 362880$ となります.