第2問

tsukemono 採点者ジャッジ 難易度: 数学 > 高校数学
2025年11月1日0:00 正解数: 5 / 解答数: 6 (正答率: 100%) ギブアップ不可
この問題はコンテスト「第1回コンテスト(2025年11月)」の問題です。

解答

(ア) e
(イ) 1
(ウ) 1
(エ) 2


おすすめ問題

この問題を解いた人はこんな問題も解いています

第1問

tsukemono 採点者ジャッジ 難易度:
38日前

6

第1問

次の空欄$(ア)~(オ)$に当てはまる数字をそれぞれ答えよ。
数列{$a_{n}$}を次のように定める。
$$a_1=a_2=1,a_{n+2}-a_{n+1}+a_n=0 (nは自然数)$$この数列の一般項は

$a_n=\frac{(ア)}{\sqrt{(イ)}}$$sin\frac{nπ}{(ウ)}$
である。
また、$a_{2025}=(エ)$であり、$$\sum_{n=1}^{2025}{a_n}=(オ)\quad$$である。

第5問

tsukemono 採点者ジャッジ 難易度:
38日前

10

第5問

実数$x,y$が不等式$x^2+y^2=1$をみたすとき、$x+y$の最大値を求めよ。

第4問

tsukemono 採点者ジャッジ 難易度:
38日前

3

第4問

$θ$を媒介変数とし、次のように表される曲線$C$を考える。$$\begin{cases}x=θ-sinθ\\y=1-cosθ\end{cases}$$
$0≦θ≦2π$として、この曲線$C$の長さ$L$を求めよ。

第7問

tsukemono 採点者ジャッジ 難易度:
38日前

3

第7問

次の定積分を求めよ。$$\int_{0}^{\frac{π}{2}}{\frac{dx}{1+tanx}}\quad$$

第6問

tsukemono 採点者ジャッジ 難易度:
38日前

4

第6問

次の問に答えよ。
$(1)$ $cos3θ=4cos^3θ-3cosθ$を示せ。
$(2)$ $cos4θ$を$cosθ$の整式で表せ。
$(3)$ $cos\frac{2}{7}π$が無理数であることを示せ。

第3問

tsukemono 採点者ジャッジ 難易度:
38日前

7

第3問

$t$が実数全体を動くとする。
このとき、点$$(\frac{1}{1+t^2},\frac{t}{1+t^2})$$はどのような図形を描くか答えよ。

解答する際の注意

答えの図形が正確に分かるようにお答えください。

関数方程式 解説修正版

Sry 自動ジャッジ 難易度:
3月前

13

$$問 題$$
$実数全体で定義され、実数値を取る定数でない関数f(x)がある。$
$この関数が任意の実数x,yに対して恒等式$
$$f(x ^2+y)=f(kx ^2+2y)−f(3x ^2)$$
$を満たすとき、定数kの値を求めよ。$

Lucas

shippe 自動ジャッジ 難易度:
3月前

16

問題文

₁₃₅C₃₀を7で割った余りを求めてください。

解答形式

半角数字で入力してください。

素因数分解だよ

udonoisi 自動ジャッジ 難易度:
3月前

11

問題文

$56076923$ の素因数の総和を求めてください.
ただし, 重複する素因数は異なるものとして考えます.

解答形式

例)非負整数を答えてください.

初等幾何

gurotan 採点者ジャッジ 難易度:
15月前

1

問題

解答形式

例)(1)はb√c/aとなるので、a,b,cの値をそれぞれ1,2,3行目に書いてください
⑵はdπ/eとなるので、d,eの値を4,5行目に書いてください

14月前

1

問題

y=sin2x/1+cos2x

ガウス記号の処理

sha256 自動ジャッジ 難易度:
11月前

3

問題文

以下の値を求めてください。
$$
\sum_{n=1}^{90}\sum_{k=1}^{n}\Big\lfloor{\frac{46}{91}+\frac{k-1}{n}}\Big\rfloor
$$

解答形式

答えは整数値になるので、半角数字で入力してください。