全 6 件
感想を投稿してみましょう!この感想は正解した人だけにしか見えません!
この問題を解いた人はこんな問題も解いています
三角形$ABC$の内心を$I$とし直線$AI$と三角形$ABC$の外接円の交点のうち$A$でないものを$M$, 直線$AM$と$BC$の交点を$D$,$A$から $BC$への垂線の足を$H$とすると$AD=4, BH=DM=2 $であった. このとき$CD$の長さは正の整数$a,b$を用いて$\sqrt{a} -b$と表せるので,$ a+b$を解答してください.
答えは正の整数値となるので,その整数値を半角で入力してください.
正$10$角形が半径$31$の円に内接している。 正$10$角形の面積を求めよ。
正$10$角形の面積は互いに素な正整数$a,b$及び正整数$c$と平方因子をもたない正整数$d$を用いて$\dfrac{b\sqrt{c-2\sqrt{d}}}{a}$と表されるので、$a+b+c+d$の値を半角数字で入力してください。
$x,y$を非負整数とする。 $10x+31y=1031$ を満たす組$(x,y)$をすべて求めよ。
誤って第1問と第3問の答えを逆で設定していました。大変申し訳ございません。
組$(x,y)$について、$x+y$の総和を半角数字で入力してください。
以下の $x$ に関する $100$ 次方程式の(重解を含む)$100$ 個の複素数解を $\alpha_1,\alpha_2,...,\alpha_{100}$ とします. $$x^{100}+x^{99}+2025x+12=0$$
このとき,以下の値を求めてください. $$\sum_{k=1}^{100} ({\alpha_k}^{100}+{\alpha_k}^{99})$$
整数で解答してください.
https://x.com/atwr0711/status/2000173940698927172?s=20 こちらの14番の問題と同じです.
三角形$ABC$の内心を$I$,直線$AI$と$BC$の交点を$D$とすると$AI=CI=CD=6 $であった. このとき$AC$の長さは正の整数$a,b $を用いて$ \sqrt{a} +b$と表せるので, $a+b$を解答してください.
正整数$N$を$7,10,13,16,19$で割った余りがそれぞれ$2,3,4,5,6$であるとします。このとき$N$を$1729$で割った余りを求めてください。
以下の $x$ に関する $3$ 次方程式は相異なる $3$ 個の複素数解をもつので,それぞれの解を $\alpha,\beta,\gamma$ とします. $$x^3-2^{2025}x^2+24x-2^{2023}=0$$
このとき,以下の値は整数になるので,その正の約数の個数を求めてください. $$(\alpha+\beta)(\beta+\gamma)(\gamma+\alpha)$$
https://x.com/atwr0711/status/2000173940698927172?s=20 こちらの31番の問題と同じです.
正方形・正三角形・円を組み合わせた以下の図について、$x$で示した角の大きさを求めてください。
半角数字で、0以上180未満の整数を解答してください。 「度」や「°」などの単位を付けないよう注意してください。
正方形に図のように線を引きました。外側の正方形の一辺が10のとき、青で示した部分の面積を求めてください。
解答は自然数 $a,b$ によって $\dfrac{a}{b}$ と表せるので $a+b$ の値を半角数字で解答してください。
数列${a_n}$が$$a_1=\frac{10}{31},a_{n+1}=\frac{(n+1)^n}{n^n}a_n$$を満たしている。 $a_{1031}$の値を求めよ。
$a_{1031}$の値は互いに素な整数$p,q$を用いて$\dfrac{p}{q}$と表されるので、$pq$が$2025$で割り切れる回数を半角数字で入力してください。
カボチャ$10$個とキャンディ$31$個を円周上に並べる方法は何通りあるか。 ただし、カボチャとキャンディはどちらも区別できない。
半角数字で入力してください。
鋭角三角形$ABC$があり外心を$O$とする.直線$BO$と$AC$の交点を$D$とおくと$BC=BD,DO=5,AD=6$であったので$AB$の長さの$2$乗を解答してください.