$n^2+78n-79$ を $100$ で割った余りが平方数とならないような最小の正整数 $n$ を求めよ.
半角数字で入力してください(数字のみ)。
Discordでログイン パスワードでログイン
ログインすると? ログインすると、解答・ギブアップをする他に、問題を投稿したり、ランキングで競うことができます。
または
ログインせずに解答する
この問題を解いた人はこんな問題も解いています
nを4以上1000以下の整数とする。1000以下の正整数の組$(a_1,a_2,…,a_n)$であって、$$a_1=\frac{a_2+a_3+a_4}{3},a_2=\frac{a_3+a_4+a_5}{3},…,a_{n-1}=\frac{a_n+a_1+a_2}{3},a_n=\frac{a_1+a_2+a_3}{3}$$を満たすものの個数を求めよ。
半角数字で解答してください。
$1$ 以上 $5$ 以下の整数しか項に持たない全 $2025$ 項の数列があり,任意の連続する $3$ 項において以下を満たします.
例えば,$1, 1, 1, 1, \ldots$ や $1, 3, 5, 4, \ldots$ は条件を満たします.このような数列は $N$ 個あります.$N$ を素数 $677$ で割った余りを求めてください.
半角数字で解答してください.
$a_{1},a_{2}, \cdots , a_{1500}$ は $1$ 以上 $3$ 以下の整数からなる数列であり,$a_{1501}=a_{1} =1,a_{1502}=a_{2}$ と定義すると全ての $1500$ 以下の正整数 $k$ で $a_{k+1} \neq a_{k}$ が成り立ち,かつ $1500$ 以下の正整数 $i$ のうち,
・$(a_{i},a_{i+1})=(1,3)$ となるものがちょうど $132$ 個 ・$(a_{i},a_{i+1})=(2,1)$ となるものがちょうど $213$ 個 ・$(a_{i},a_{i+1})=(3,2)$ となるものがちょうど $321$ 個 ・$(a_{i},a_{i+1},a_{i+2})=(1,2,3)$ となるものがちょうど $123$ 個
ずつ存在します.この数列としてありうるものの数が $3$ で割れる最大の回数を求めてください.(電卓の使用を推奨します.)
$x$を$x^2+2ax+b=0$の解でない実数、$a,b$を$100$以下の正整数とする。 ある$a,b$に対して $$x^2+2ax+b-\frac{1}{x^2+2ax+b}$$ の最小値を$min(x)$とすると、この$min(x)$の値は、$a,b$の値によって変わる。$min(x)$が一意に定まり、かつその$min(x)$を最小にするような$a,b$の値をすべて求めよ。
追記:問題文を一部変更しました。
ありうる組$(a,b)$について、$a+b$の総和を半角数字で入力してください。
$1$ 以上 $8$ 以下の数が $8$ 個あります.$8\times 8$ の白いマス目に,$8$ 個の数を棒グラフとして黒で書き込むことにしました.このとき,このマスから $2\times 2$ の正方形を切り取りとる方法のうち,黒マスがちょうど $2$ マスである方法の数を最初の $8$ 個の数のスコアと呼ぶことにします.$8$ 個の数の選び方 $8^{8}$ 通り全てに対してのスコアの総和を答えてください.
末尾に「(通り)」などをつけず,非負整数で答えてください.
次を満たす整数係数多項式の組 $(f,g)$ はいくつありますか? $$f(g(x))=x^6+1 0≦f(0),g(0)≦2025$$
条件を満たす組の個数を半角整数で $1$ 行目に入力してください。
1から2pの2p個の異なる自然数を全て並べる時に隣り合う二つの積が常に偶数になる通りをSpとするとき、それがpで最大何回割れるか答えろ. (ただしpは素数とする)
(半角の自然数が答え)
$56076923$ の素因数の総和を求めてください. ただし, 重複する素因数は異なるものとして考えます.
例)非負整数を答えてください.
整数 $x$ と素数 $p$ が、以下の連立合同式を満たす。
$x \equiv p \pmod{9797}$ $x \equiv 11p + 69 \pmod{9991}$
この条件を満たす最小の素数 $p$ を求めよ。
半角左詰め
$p=3, \quad q=5, \quad r=7$
$X = p^q + q^p$ $Y = q^r + r^q$ $Z = r^p + p^r$
$N = X^p + Y^q + Z^r$
このとき、$N$を$105$で割った余りを求めよ。
正の実数 $x,y,z$ が $x+y+z=xyz$ を満たしているとき,
$$\dfrac{x}{1+x^2}+ \dfrac{y}{1+y^2}+ \dfrac{z}{1+z^2}$$
の最大値を求めてください.
求める値は互いに素な正整数 $a,c$ および平方因子を持たない正整数 $b$ を用いて, $\dfrac{a \sqrt{b}}{c}$ と表せるから, $a+b+c$ を解答してください.
$a,n$ を正の整数とする. $$\int ax^ne^xdx$$ の $e^x$ の係数が $2026!$ であるような $(a,n)$ の組は何個ありますか?
整数で解答してください