全 6 件
感想を投稿してみましょう!この感想は正解した人だけにしか見えません!
この問題を解いた人はこんな問題も解いています
次の条件を満たす2025以下のnはいくつ存在しますか
条件 $f(n)=4d(n)$として、 ($d(n)$はnの正の約数の個数) $f^5(n)+f^{1278}(n)=56$が成立する。 (fの肩は関数の合成回数を表す)
n以下の全ての自然数の集合Sの部分集合Tは次を満たした。 ・Tの任意の要素x,yについて、xyはTに含まれない。 nに対するTの要素数の最大値をf(n)とする。 このとき、ある人は命題Qnを唱えた。 「Tの要素数がf(n)となるTは1つしかない」 Qnが偽となる2025以下のnの総和を求めよ。
3つの空箱がある。次のルールで2人で交互に石を箱に入れる。 ・どちらかの行動を行う ・1つの箱に1つ石を入れる。 ・既に石が入っている1つの箱に、今入っている個数の石をその箱に入れる (つまり、石の個数が倍になる) ・ただし、既に箱にN個以上入っている場合はこれ以上石を入れられない
全ての山の石の個数をそれぞれN以上にした方が勝ちである。後手必勝となる2025以下のNの総和を求めよ。
$S=$$\{$$\sqrt{1},\sqrt{2},\dots,\sqrt{n} $$\}$の部分集合であって、次を満たすものの個数をmとする。 ・要素が3つ ・どの2つを選んでも、2つの比の値が有理数となる
n=mとなるnを全て求め、その総和を求めなさい。
どの4頂点を選んでもそれが閉路にならない、800頂点の単純平面グラフの辺の数の最大値を求めよ。
24×24の方眼紙に色を塗る。使う色は、ビリジアン、エメラルド、ライムである。 色を塗った後、方眼紙の上下をねじらずに丸めて繋げると筒状になり、さらに筒の端同士をねじらずに丸めて繋げるとトーラスになる。このとき、どのマス目に対しても次の条件を満たした。
・自身のマスに隣り合う4マスのうち、斜めに繋がっていない2マスを選ぶと、必ずどちらかが自身と同じ色で、どちらかが自身と異なる色である ・任意の2×2の正方形内の色に関して、同じ色で隣り合っている2マスが存在しなければ、正方形内に3種類の色が存在する
あり得る塗り方は何通りあるか。但し、方眼紙を回転させて一致するものは異なるものとして数える。
2種類のお菓子A、Bがそれぞれ24個ずつある、これをX, Y, Zの3人で余りなく分けることにした。ここで、ある人が1個ももらわないお菓子の種類があってもよい、X、Y、Zの3人のうちに、以下の条件をみたす2人が存在しないような分け方は何通りありますか。
条件:2人のうち1人はAをa個、Bをa'個もらい、もう1人はAをb個、Bをb'個もらうとき、a≤a'かつb≤b'かつa+b<a'+b'が成り立っている。
次のグラフにおいて、毎ターン1つの線分上を駒が移動するとき、初期位置を点Pとして、1024ターン後に駒が点Pに戻るとき、駒の移動のやり方としてあり得るものの総数を1007で割った余りを求めよ。
N×Nのマス目にNこの駒を置くと、ある面積N以上の長方形のエリアで、エリア内に駒が存在しないものは存在しなかった。このような駒の配置方法の総数をf(N)として、$\displaystyle \sum _{i=1}^{\infty } f( i)$を計算して下さい。
次のルールで整数を10個1列に並べて書く ・左端は21である ・隣り合う2数について、右の数は左の数の2倍の数か、左の数から3を引いたものである あり得る整数の列はいくつありますか
0,1,2,……,8 の数字から一つずつ選んでa,b,c,d,e,f,gに代入するという操作を考える。 数字の重複を許さないとき、十進表記された7桁の数abcdefgが3の倍数となる確率を求めよ。 ただし、a=0の場合も認めます。
互いに素な正整数q,pを用いて p/q と表せるため、p+qを解答してください。
0,1,2,……,8 の数字から一つずつ選んでa,b,c,d,e,f,gに代入するという操作を考える。 数字の重複を許すとき、十進表記された7桁の数abcdefgが3の倍数となる確率を求めよ。 ただし、a=0の場合も認めます。 (似た問題を投稿しています。解答する場所を間違えないように注意してください。)
互いに素な正整数p,qを用いてp/qと表せるため p+qを解答してください。