問題15

Youteru 自動ジャッジ 難易度: 数学 > 競技数学
2025年12月13日12:00 正解数: 0 / 解答数: 12 ギブアップ不可
この問題はコンテスト「組合せしか出題しません」の問題です。

全 12 件

回答日時 問題 解答者 結果
2025年12月27日14:18 問題15 Luminous_moon
不正解
2025年12月27日14:16 問題15 Luminous_moon
不正解
2025年12月24日22:54 問題15 Dgyd5363
不正解
2025年12月21日17:43 問題15 L4mbdaUpsil0n
不正解
2025年12月20日16:46 問題15 Dgyd5363
不正解
2025年12月17日0:47 問題15 Dgyd5363
不正解
2025年12月17日0:47 問題15 Dgyd5363
不正解
2025年12月17日0:31 問題15 Dgyd5363
不正解
2025年12月14日18:11 問題15 asmin
不正解
2025年12月13日16:49 問題15 PiPiRaN
不正解
2025年12月13日16:48 問題15 PiPiRaN
不正解
2025年12月13日16:43 問題15 PiPiRaN
不正解

おすすめ問題

この問題を解いた人はこんな問題も解いています

問題5

Youteru 自動ジャッジ 難易度:
23日前

26

N×Nのマス目にNこの駒を置くと、ある面積N以上の長方形のエリアで、エリア内に駒が存在しないものは存在しなかった。このような駒の配置方法の総数をf(N)として、$\displaystyle \sum _{i=1}^{\infty } f( i)$を計算して下さい。

問題12

Youteru 自動ジャッジ 難易度:
23日前

10

次のグラフにおいて、毎ターン1つの線分上を駒が移動するとき、初期位置を点Pとして、1024ターン後に駒が点Pに戻るとき、駒の移動のやり方としてあり得るものの総数を1007で割った余りを求めよ。

問題10

Youteru 自動ジャッジ 難易度:
23日前

9

Aさんは次のゲー厶を行った。
Aさんはコインを持っていない。
2つのボタンがある。片方を押すと$1/3$の確率でコイン、もう片方を押すと$2/3$の確率でコインが得られる。4050回ボタンを押して2025個のコインが得られるようにAさんが最善の行動をした際、Aさんは次の条件を満たした。
①4050回スイッチを押した後コインを2025持っていた。
②2n回スイッチを押した後コインをn個持っている、という状態が0以上3回以下発生した。(1≦n≦2024)
条件①②を同時に満たす確率をある既約分数$\frac{a}{b}$を用いて
$\frac{a}{b}×_{4050}C_{2025}×(\frac{2}{9})^{2025}$
と表せるので、a+bを求めよ。

問題7

Youteru 自動ジャッジ 難易度:
23日前

15

3つの空箱がある。次のルールで2人で交互に石を箱に入れる。
・どちらかの行動を行う
 ・1つの箱に1つ石を入れる。
 ・既に石が入っている1つの箱に、今入っている個数の石をその箱に入れる
(つまり、石の個数が倍になる)
・ただし、既に箱にN個以上入っている場合はこれ以上石を入れられない

全ての山の石の個数をそれぞれN以上にした方が勝ちである。後手必勝となる2025以下のNの総和を求めよ。

4月前

2

問題文タイトル:平方境界・反転素数・合同整合

3桁の正の整数 n が次の条件を満たす:

  1. n + 1 は完全平方数である。
  2. n の十進表記を反転して得られる整数 r は素数である。
  3. |n − r| は 18 の倍数である。
  4. n は 13 の倍数である。

このような n を求めなさい。
(解答は整数を1つ、例:123

問題文を入力してください

解答形式

例)ひらがなで入力してください。

はんぺん

Azarashiii 自動ジャッジ 難易度:
15月前

1

問題文

$x>1 , y>1$で、
$α = log_4 x , β = log_8 y $ と定める。 $2α + 3β =2 $ のとき、$x+y $ のとりうる最小の値を求めよ。

問題14

Youteru 自動ジャッジ 難易度:
23日前

4

Sを0以上10以下の自然数の集合として、
P君は、xy座標平面$S^2$の盤面上で、スタートからゴールへ移動する。xが増加する方向が右で、yが増加する方向が上である。6種類の点が存在する。
スタート…(0,0)で、P君が可能な動きはバイオレットと同じである。
ゴール…(10,10)
ネイビー…スタート、ゴール以外の点について、xがyの倍数なら(x,y)はネイビーであり、xがyの倍数でないなら(x,y)はネイビーでない。P君はネイビーに移動できない。
バーミリオン…P君がこの点にいるとき、P君は1つ上へ移動するか、2つ右、1つ下に飛んで移動することができる。
バイオレット…P君がこの点にいるとき、P君は1つ右へ移動するか、2つ上、1つ左に飛んで移動することができる。
アイボリー…P君はアイボリーに移動できない。アイボリーは全部で5個存在する。

ただし、P君が移動して座標平面$S^2$から飛び出てはいけない。
全ての$S^2$に含まれる点のうち、スタート、ゴール、ネイビー以外の点に自由にバーミリオン、バイオレット、アイボリーのいずれかを塗ることができ、その盤面AについてP君がスタートからゴールに行く方法の総数をF(A)とする。
F(A)の最大値をXとし、
全ての盤面Aについて、F(A)の総和をYとし
Yを10007で割った余りをZとして、XとZの10進法における文字列の結合を求めよ。

問題6

Youteru 自動ジャッジ 難易度:
23日前

13

ボール100個をランダムに20人に分ける。10人が1組の生徒で、10人が2組の生徒である。ボールが全く貰えない人がいてもよい。全てのボールは区別できず、分け方は$ _{119}C_{19}$通りあるが、それぞれの分け方は同様に確からしい。
1組の生徒のうち、それぞれの持つボール数の総積をポイントとする。ポイントの期待値は互いに素なA,Bで$\frac{A}{B}$と表せるので、A+Bを解答せよ。

問題11

Youteru 自動ジャッジ 難易度:
23日前

7

24×24の方眼紙に色を塗る。使う色は、ビリジアン、エメラルド、ライムである。
色を塗った後、方眼紙の上下をねじらずに丸めて繋げると筒状になり、さらに筒の端同士をねじらずに丸めて繋げるとトーラスになる。このとき、どのマス目に対しても次の条件を満たした。

・自身のマスに隣り合う4マスのうち、斜めに繋がっていない2マスを選ぶと、必ずどちらかが自身と同じ色で、どちらかが自身と異なる色である
・任意の2×2の正方形内の色に関して、同じ色で隣り合っている2マスが存在しなければ、正方形内に3種類の色が存在する

あり得る塗り方は何通りあるか。但し、方眼紙を回転させて一致するものは異なるものとして数える。


タイトル:三条件で定まる点と最短距離条件(大学レベル)

平面上に、点 $A(0,0)$、点 $B(12,0)$、点 $C(4,9)$ がある。
点 $P(x,y)$ は次の条件を満たすものとする:

  1. 距離比 $\displaystyle \frac{AP}{BP}=\phi^3$(ただし $\displaystyle \phi=\frac{\sqrt{5}+1}{2}$)
  2. 角度条件 $\angle APC = 45^\circ$
  3. 直線 $BC$ からの距離が最小となる位置を選ぶ。

点 $P$ の座標を求めなさい。
(解答は「x, y」の順に小数第2位まで。例:1.23, 4.56
問題文
問題文を入力してください

解答形式

例)ひらがなで入力してください。

漸化式②

Americium243 自動ジャッジ 難易度:
2月前

2

問題文

正の整数 ${n}$ に対して定義される数列 ${a_n}$ が
$${a_1=2, a_2=-4, a_{n+2}-2a_{n+1}+4a_n=0}$$
を満たしている。
${|a_{2025}|}$ の正の約数の個数を求めよ。

解答形式

整数で入力してください

問題3

Youteru 自動ジャッジ 難易度:
23日前

34

2種類のお菓子A、Bがそれぞれ24個ずつある、これをX, Y, Zの3人で余りなく分けることにした。ここで、ある人が1個ももらわないお菓子の種類があってもよい、X、Y、Zの3人のうちに、以下の条件をみたす2人が存在しないような分け方は何通りありますか。

条件:2人のうち1人はAをa個、Bをa'個もらい、もう1人はAをb個、Bをb'個もらうとき、a≤a'かつb≤b'かつa+b<a'+b'が成り立っている。