[G] Oplus Plus

GaLLium31 自動ジャッジ 難易度: 数学 > 競技数学
2025年12月21日13:00 正解数: 3 / 解答数: 6 (正答率: 50%) ギブアップ数: 2
この問題はコンテスト「GaNC」の問題です。

全 6 件

回答日時 問題 解答者 結果
2025年12月23日12:28 [G] Oplus Plus Weskdohn
正解
2025年12月21日15:48 [G] Oplus Plus arararororo
正解
2025年12月21日15:47 [G] Oplus Plus arararororo
不正解
2025年12月21日15:45 [G] Oplus Plus arararororo
不正解
2025年12月21日13:18 [G] Oplus Plus bbl_cookie
不正解
2025年12月21日0:44 [G] Oplus Plus Germanium32
正解

おすすめ問題

この問題を解いた人はこんな問題も解いています

[H] Make Square 2

GaLLium31 自動ジャッジ 難易度:
21日前

2

問題文

正整数 $a$ に対して,$\dfrac{n(n+2)}{a}$ が平方数であるような正整数 $n$ が無限に存在しました.さらに小さい方から $i$ 番目のものを $n_i$ とすると,任意の正整数 $i$ が $n_{i+2}+n_{i}=98n_{i+1}+2n_1$ を満たしました.このとき,$a$ としてありうるものの総和を解答してください.

クソ問

tomorunn 自動ジャッジ 難易度:
4日前

4

数列${a_n},{b_n},{c_n}$を
$a_1=300,b_1=400,c_1=500$
$a_{n+1}=\dfrac12\sqrt{2b_n^2+2c_n^2-a_n^2}$
$b_{n+1}=\dfrac12\sqrt{2c_n^2+2a_n^2-b_n^2}$
$c_{n+1}=\dfrac12\sqrt{2a_n^2+2b_n^2-c_n^2}$
で定めるとき、3辺を$a_n,b_n,c_n$とする三角形の面積を$S_n$とする。
この三角形が退化しないことは証明できるので、$S_8$の値を求めよ。ただし、求めるべき値は互いに素な正整数$a,b$を用いて$\dfrac a b$と表せるので$a+b$を解答せよ。

第2問

smasher 採点者ジャッジ 難易度:
7月前

4

問題文

実数から実数への関数$f$であって任意の実数$x,y$について$$f(x)+f(f(y)+x)=f(f(x))+4y$$
が成り立つようなものを全て求めよ。

解答形式

簡単でいいので証明もお願いします。

問題2

sulippa 自動ジャッジ 難易度:
6月前

5

問題文

整数 $x$ と素数 $p$ が、以下の連立合同式を満たす。

$x \equiv p \pmod{9797}$
$x \equiv 11p + 69 \pmod{9991}$

この条件を満たす最小の素数 $p$ を求めよ。

解答形式

半角左詰め

中線と垂線

kusu394 自動ジャッジ 難易度:
16月前

7

問題文

$\angle ABC $ と $\angle BCA$ が鋭角であるような $\triangle ABC$ について,辺 $BC$ の中点を $M$ とします.また,$M$ から辺 $AB,AC$ におろした垂線の足をそれぞれ $P, Q$ とすると、線分 $AM, BQ, CP$ が一点で交わります.

$$ AB = 12, \ \ BC= 20 $$

のとき,$\triangle ABC$ の面積の二乗としてありうる値の総和を解答してください。

解答形式

答えは正の整数値となるので, その整数値を半角で入力してください.

[E] Delete Pairs

GaLLium31 自動ジャッジ 難易度:
21日前

22

問題文

$30$ の正の約数を並べ替えた数列 $A$ としてありうるもの全てに対する,以下の操作方法の個数の総和を解答してください.

  • 「連続する $2$ 数 $A_i,A_{i+1}$ であって $A_i \mid A_{i+1}$ を満たすものを $1$ つ選び,それらをともに $A$ から削除する」という操作を $4$ 回行い,$A$ を空にする.

[D] Xmas Function

GaLLium31 自動ジャッジ 難易度:
21日前

23

問題文

$S=\lbrace 0,1, \ldots , 30 \rbrace$ とします.関数 $f:S \rightarrow S$ であって,以下を満たすようなものの個数を $N$ とします.

  • 任意の $x,y \in S$ について,$x^{12}-y^{12}$ が $31$ の倍数ならば,$f(x)^{25}-f(y)^{25}$ も $31$ の倍数.

$N = a \cdot b^c$ であるような正整数 $a,b,c$ について,$a+b+c$ の最小値を解答してください.

D. ループ

G414xy 自動ジャッジ 難易度:
15月前

77

問題文

4x4のマスのうち1個以上に、対角線を1本ずつ引いたとき、全ての対角線がループの一部分であるものは何通りですか?
但し、「ループの一部分である」とは、
全ての対角線の端が、ちょうど1つの別の対角線の端と同位置にあることを意味します。

解答形式

半角数字で入力してください。

WMC(H)

Weskdohn 自動ジャッジ 難易度:
8月前

7

問題文

接点・共通領域を持たない円$A,B$があり,これらの中心を通る直線$l$との交点を$P,Q,R,S$とします.($P≠Q≠R≠S$)

但し$P,Q$が$A$の円周上,$R,S$が$B$の円周上にあり,$P,Q,R,S$の順に並ぶとします.

また$PS,QR$の長さをそれぞれ$a,b$と置きます.

この時$A,B$の共通内接線の長さが$2025$となるような$(a,b)$の組として考えられるものは何通りありますか.

解答形式

半角数字で解答して下さい.

[F] Phi Puzzle

GaLLium31 自動ジャッジ 難易度:
21日前

20

問題文

平方因子を持たない正整数 $n$ であって,$\dfrac{\phi(n)}{\gcd(n,\phi(n))} = 18$ を満たすものの総和を解答してください.

第2回琥珀杯 B

Kohaku 自動ジャッジ 難易度:
9月前

9

問題文

$AB=1$の正十二角形$ABCDEFGHIJKL$がある。$KD$と$CJ$、$AF$と$DK$、$AF$と$DI$、$DI$と$EJ$、$AH$と$EJ$、$AH$と$CJ$の交点を、それぞれ$M,N,O,P,Q,R$とする。六角形$MNOPQR$の面積を求めよ。

解答形式

互いに素な正整数$a,b,c$及び平方因子をもたない正整数$d$を用いて、$\frac{b−c\sqrt{d}}{a}$と表せます。$a+b+c+d$を解答してください。

内接円の半径

nepia_nepinepi 自動ジャッジ 難易度:
11月前

7

問題文

半径$3$の円に内接する六角形$ABCDEF$ は以下の2つの条件をみたします:

四角形$ABDE, BCEF,CDFA$は長方形
周長が$15$

このとき,三角形$ACE$の内接円の$\textbf{半径}$を求めてください。

解答形式

答は非負整数$a,b$を用いて$\frac{a}{b}$と表されるので$a+b$の値を半角数字で答えてください。