[G] Oplus Plus

GaLLium31 自動ジャッジ 難易度: 数学 > 競技数学
2025年12月21日13:00 正解数: 2 / 解答数: 5 (正答率: 40%) ギブアップ数: 1
この問題はコンテスト「GaNC」の問題です。

全 5 件

回答日時 問題 解答者 結果
2025年12月21日15:48 [G] Oplus Plus arararororo
正解
2025年12月21日15:47 [G] Oplus Plus arararororo
不正解
2025年12月21日15:45 [G] Oplus Plus arararororo
不正解
2025年12月21日13:18 [G] Oplus Plus bbl_cookie
不正解
2025年12月21日0:44 [G] Oplus Plus Germanium32
正解

おすすめ問題

この問題を解いた人はこんな問題も解いています

第2問

smasher 採点者ジャッジ 難易度:
6月前

4

問題文

実数から実数への関数$f$であって任意の実数$x,y$について$$f(x)+f(f(y)+x)=f(f(x))+4y$$
が成り立つようなものを全て求めよ。

解答形式

簡単でいいので証明もお願いします。

WMC(H)

Weskdohn 自動ジャッジ 難易度:
8月前

7

問題文

接点・共通領域を持たない円A,Bがあり,これらの中心を通る直線lとの交点をP,Q,R,Sとします.(P≠Q≠R≠S)
 但しP,QがAの円周上,R,SがBの円周上にあり,P,Q,R,Sの順に並ぶとします.

またPS,QRの長さをそれぞれa,bと置きます.

この時A,Bの共通内接線の長さが2025となるような(a,b)の組として考えられるものは何通りありますか.

解答形式

答えだけ(答えが1通りなら"1"だけ)を半角数字で解答して下さい.

第2問

sulippa 採点者ジャッジ 難易度:
6月前

1

問題文

整数辺を持つ直角三角形のうち、その斜辺を a、内接円の半径を r としたとき、等式
$a^2 - 4ar - 4r^2 = r$
を満たすものを考える。
そのような三角形すべてのうち、内接円の半径 r が 1000 未満であるもの全ての、面積の総和を求めよ。

解答形式

半角スペースなし

14月前

1

問題

y=sin2x/1+cos2x

WMC(F)

Weskdohn 自動ジャッジ 難易度:
8月前

12

問題文

次の虫食い算について,SUKEN=?

解答形式

半角数字で入力して下さい.
但しS≠E≠I≠K≠O≠U≠Nとします.

D

wasab1 自動ジャッジ 難易度:
13月前

4

問題文

$AB=2,AC=1$ をみたす三角形 $ABC$ の垂心を $H$,内心を $I$,外接円を $\Gamma$ とします.直線 $AH$ と $BI$ の交点を $D$ とし,$A$ における $\Gamma$ の接線と直線 $CD$ の交点を $X$ とすると,$AX=BX$ となりました.このとき,辺 $BC$ の長さを求めてください.ただし,求める値は,互いに素な正整数 $a,c$ と平方因子をもたない正整数 $b$ を用いて $\dfrac{a+\sqrt{b}}{c}$ と表されるので,$a\times b\times c$ を解答してください.

解答形式

半角数字で入力してください。

CpSLSL

Weskdohn 採点者ジャッジ 難易度:
7月前

2

問題文

次を満たすような正整数の組 $(x,y,z)$ をすべて求めてください.
$$2^x+9^y+2025=2009^z-65-28$$

解答形式

簡単な証明をお書き下さい.

第4問

sulippa 採点者ジャッジ 難易度:
6月前

4

問題文

整数辺の直角三角形の中で、ある特別な性質を持つものを「閉じた三角形」と呼ぶ。
その定義は次の通りである:
三角形の3つの頂点から、最も近い内接円の接点までの3つの線分を考える。その3つの線分の長さを3辺として、新たな非退化三角形を作ることができる。
この条件を満たすもののうち、斜辺が300未満であるもの全てを考え、それらの周長の総和を求めよ。

解答形式

例)ひらがなで入力してください。

[H] Make Square 2

GaLLium31 自動ジャッジ 難易度:
1日前

2

問題文

正整数 $a$ に対して,$\dfrac{n(n+2)}{a}$ が平方数であるような正整数 $n$ が無限に存在しました.さらに小さい方から $i$ 番目のものを $n_i$ とすると,任意の正整数 $i$ が $n_{i+2}+n_{i}=98n_{i+1}+2n_1$ を満たしました.このとき,$a$ としてありうるものの総和を解答してください.

WMC(A)

Weskdohn 自動ジャッジ 難易度:
8月前

55

問題文

$6106$以下の正整数$N$について,以下のようにスコアを定める.
スコア:整数$a,b(a≦b)$の組で,$ab=N$を満たすようなものの個数.
スコア$=2$となるような$N$は何通りありますか.
但し,以下に示す10000以下の素数表を用いてもいい.
http://allthingsuniverse.com/jp/prime/10000.html

解答形式

半角数字で入力してください.

[D] Xmas Function

GaLLium31 自動ジャッジ 難易度:
1日前

18

問題文

$S=\lbrace 0,1, \ldots , 30 \rbrace$ とします.関数 $f:S \rightarrow S$ であって,以下を満たすようなものの個数を $N$ とします.

  • 任意の $x,y \in S$ について,$x^{12}-y^{12}$ が $31$ の倍数ならば,$f(x)^{25}-f(y)^{25}$ も $31$ の倍数.

$N = a \cdot b^c$ であるような正整数 $a,b,c$ について,$a+b+c$ の最小値を解答してください.

WMC(K)

Weskdohn 自動ジャッジ 難易度:
8月前

23

問題文

半径$66$の円に内接する正$66$角形の対角線(各辺も含む)の長さの$66$乗和を求めて下さい.
但しある長さの$𝑛$乗和とは,与えられた長さ$𝑃_1,𝑃_2…$について$𝑃_1^n + 𝑃_2^n …$を指します.

解答形式

答えは非常に大きくなる恐れがあるので,$2025$で割った余りを求めて下さい.
4/26 19:55 誤った答えが入力されていました。大変申し訳ありません。