$$問 題$$ $自然数Nと素数p,q,rが以下の式を満たすとき、Nを求めよ。$ $$ \begin{cases} N=p^qq^pr\\ p ^q +q ^p=r \end {cases} $$
Discordでログイン パスワードでログイン
ログインすると? ログインすると、解答・ギブアップをする他に、問題を投稿したり、ランキングで競うことができます。
または
ログインせずに解答する
この問題を解いた人はこんな問題も解いています
$p=3, \quad q=5, \quad r=7$
$X = p^q + q^p$ $Y = q^r + r^q$ $Z = r^p + p^r$
$N = X^p + Y^q + Z^r$
このとき、$N$を$105$で割った余りを求めよ。
半角左詰め
三角形 $ABC$ において,角 $A,B,C $の傍接円の半径をそれぞれ $r_A,r_B,r_C$ とし,内接円の半径を $r $とする.このとき,三角形 $ABC$ が以下の条件を満たすとき$r_A\cdot r_B\cdot r_C \cdot r$の最大値を求めよ. $$BC=28,∠BAC=60 $$
自然数となるので、その値を入力してください
$N=p^q-pq$とします。$N-1$が平方数、$p,q,\frac{N}{2},N+1,N+3$がいずれも素数になるような$N$としてありうる最小の値を求めてください。
半角整数で答えてください。
命題「aⁿ+bⁿ=cⁿ (n整数、a,b,cの最大公約数1)を満たす全ての自然数a,b,cは互いに素である」の真偽を述べよ
真ならば真、偽ならば偽と入力
関数$A(n),B(n)$を $$ A(n)=(1\le x \le nを満たす1001と互いに素な整数xの個数)\\ B(n)=(n\le x \le 1001を満たす1001と互いに素な整数xの個数) $$ と定めるとき,次の値を求めてください. $$ \sum_{n=1}^{1000}\quad \frac{A(n)^2}{A(n)-B(n)} $$
図の条件の下で、青で示した角の大きさを求めてください。
解答を度数法で表し、0以上180未満の数値を半角数字で解答してください。 単位("度・°"など)はつけないでください。
図の条件の下で、緑で示した三角形の面積を求めてください。
半角数字で解答してください。
図の条件において、$x$ の長さを求めてください。 なお、図中オレンジの点は直角三角形の内心です。
解答は $x=\sqrt a$ となります。$a$ を半角数字で解答してください。
三角形の2辺を6等分する点を図のように結びました。青い部分の面積が52のとき、赤い部分の面積を求めてください。
ある神社ではおみくじを販売していて、おみくじの内容について次のようなことが分かっています。
・くじは2026本あり、それぞれに運勢が1つ書いてある。 ・運勢は7種類あり、大吉、中吉、小吉、凶、大凶、吉、平である。 ・(大吉の本数):(中吉の本数)=5:7 ・(中吉の本数):(小吉の本数)=9:11 ・(小吉の本数):(凶の本数)=7:4 ・(凶の本数):(大凶の本数)=11:8 ・(吉の本数):(平の本数)=5:2
平の本数を求めてください。
答えの数字を半角数字で入力してください。
ここ3年ぐらい吉しか引いてないです。 (追記)今年も吉だったので4年連続です。
1から2pの2p個の異なる自然数を全て並べる時に隣り合う二つの積が常に偶数になる通りをSpとするとき、それがpで最大何回割れるか答えろ. (ただしpは素数とする)
(半角の自然数が答え)
$\angle{A}=60^\circ,AB<AC$ なる三角形 $ABC$ について,その外心を $O$ ,垂心を $H$ とします.直線 $OH$ と直線 $AB$ との交点を $P$ としたとき,以下が成立しました.$$AP=8,AH=7$$このとき,三角形 $ABC$ の面積は互いに素な正整数 $a,c$ および平方因子を持たない正整数 $b$ を用いて $\displaystyle\frac{a\sqrt{b}}{c}$ と表せるので,$a+b+c$ を解答してください.
半角数字で入力してください。