メリークリスマス!!

Sry 自動ジャッジ 難易度: 数学 > 高校数学
2025年12月24日16:31 正解数: 5 / 解答数: 5 (正答率: 100%) ギブアップ数: 0

$$問 題$$
$自然数Nと素数p,q,rが以下の式を満たすとき、Nを求めよ。$
$$
\begin{cases}
N=p^qq^pr\\
p ^q +q ^p=r
\end {cases}
$$


スポンサーリンク

解答提出

この問題は自動ジャッジの問題です。 解答形式が指定されていればそれにしたがって解答してください。

Discordでログイン Sign in with Google パスワードでログイン

ログインすると? ログインすると、解答・ギブアップをする他に、問題を投稿したり、ランキングで競うことができます。

または


おすすめ問題

この問題を解いた人はこんな問題も解いています

100G

Ryomanic 自動ジャッジ 難易度:
1日前

2

問題文

$\angle{ADC}=\angle{BCD}=90^\circ,BAD>90^\circ$なる台形$ABCD$について,
$$\angle{BAC}=90^\circ,AB=4,AC=3$$
が成立した.$ABCD$の面積を求めよ.

解答形式

求める値は互いに素な正整数$p,q$を用いて$\frac{p}{q}$と表せるので,$p+q$を解答してください.

TMC001(B)

hya_math 自動ジャッジ 難易度:
2月前

12

関数$A(n),B(n)$を
$$
A(n)=(1\le x \le nを満たす1001と互いに素な整数xの個数)\\
B(n)=(n\le x \le 1001を満たす1001と互いに素な整数xの個数)
$$
と定めるとき,次の値を求めてください.
$$
\sum_{n=1}^{1000}\quad \frac{A(n)^2}{A(n)-B(n)}
$$

TMC001(H)

OooPi 自動ジャッジ 難易度:
2月前

11

問題文

正整数列 $A_{n}$ を以下のように定義する
$$
1個の2 以上の正整数を要素に持ち,それらの総積が n に等しい
$$  この時 $A_{2^{100}}$ としてありうる数列すべてについて,その要素の
総和を $97$ で割った余りを答えてください。
  ただし,並び替えて一致するものも別々として数える。
例えば $A_{8}$ としてありうるものは $\lbrace8\rbrace,\lbrace2,4\rbrace, \lbrace4,2\rbrace, \lbrace2,2,2\rbrace$ でありその要素の総和は $8+2+4+4+2+2+2+2=26$ である。

解答形式

正整数で答えてください

連立方程式

smasher 自動ジャッジ 難易度:
3月前

4

問題文

以下の連立方程式を満たすような実数の組$(a,b,c,d)$の個数を求めよ。
$$
\begin{cases} ab^2c^3d^4=1 \\ a^4bc^2d^3=1\\a^3b^4cd^2=1\\a^2b^3c^4d=1\end{cases}
$$

解答形式

半角数字で個数を入力してください。

自作3

tomorunn 自動ジャッジ 難易度:
6月前

5

問題文

モニターに0が表示されている。ここには3つのボタンがあり、
・ボタン$A$を押すとモニターの数字が1増える。
・ボタン$B$を押すとモニターの数字が2増える。
・ボタン$C$を押すとモニターの数字が3増える。
ボタン$A~C$をそれぞれ任意の回数押したとき、
最後に表示される数字が300以下の非負の3の倍数となるようなボタンの押し方の総数を求めよ。ただし、ボタンを押す順番は区別しない。

解答形式

例)半角数字で入力してください。

二等辺三角形と最小値

smasher 自動ジャッジ 難易度:
3月前

3

問題文

$AB=BC$で、面積が$2025$であるような二等辺三角形$ABC$がある。$AB(=BC)$の最小値を求めよ。

解答形式

半角数字で$AB^2(=BC^2)$の値を入力してください。

yes 自動ジャッジ 難易度:
9月前

9

問題文

1から100までの整数の中から異なる3つの整数を選び、$a<b<c$ とします。これらの3つの整数が等差数列をなすような選び方は何通りありますか?

解答形式

半角英数字で解答してください。

OMC没問2

Kta 自動ジャッジ 難易度:
9月前

4

問題文

$\angle{A}=60^\circ,AB<AC$ なる三角形 $ABC$ について,その外心を $O$ ,垂心を $H$ とします.直線 $OH$ と直線 $AB$ との交点を $P$ としたとき,以下が成立しました.$$AP=8,AH=7$$このとき,三角形 $ABC$ の面積は互いに素な正整数 $a,c$ および平方因子を持たない正整数 $b$ を用いて $\displaystyle\frac{a\sqrt{b}}{c}$ と表せるので,$a+b+c$ を解答してください.

解答形式

半角数字で入力してください。

問題2

sulippa 自動ジャッジ 難易度:
5月前

5

問題文

整数 $x$ と素数 $p$ が、以下の連立合同式を満たす。

$x \equiv p \pmod{9797}$
$x \equiv 11p + 69 \pmod{9991}$

この条件を満たす最小の素数 $p$ を求めよ。

解答形式

半角左詰め

組み合わせ

suth 自動ジャッジ 難易度:
6月前

10

1から2pの2p個の異なる自然数を全て並べる時に隣り合う二つの積が常に偶数になる通りをSpとするとき、それがpで最大何回割れるか答えろ.
(ただしpは素数とする)

(半角の自然数が答え)

Bar Chart

aa36 自動ジャッジ 難易度:
4月前

5

問題文

$1$ 以上 $8$ 以下の数が $8$ 個あります.$8\times 8$ の白いマス目に,$8$ 個の数を棒グラフとして黒で書き込むことにしました.このとき,このマスから $2\times 2$ の正方形を切り取りとる方法のうち,黒マスがちょうど $2$ マスである方法の数を最初の $8$ 個の数のスコアと呼ぶことにします.$8$ 個の数の選び方 $8^{8}$ 通り全てに対してのスコアの総和を答えてください.

解答形式

末尾に「(通り)」などをつけず,非負整数で答えてください.

関数方程式

Sry 自動ジャッジ 難易度:
3月前

7

問題

$実数全体で定義され、実数値を取る定数でない関数f(x)がある。$
$この関数が任意の実数x,yについて恒等式$
$$f(x^2+y)=f(kx^2+2y)-f(3x^2)$$
$を満たすとき、定数kの値を求めよ。$