$m^{n+1}+n^m+1=2026$ を満たす正整数の組 $(m,n)$ を全てについて,$mn$の総和を求めてください.
Discordでログイン パスワードでログイン
ログインすると? ログインすると、解答・ギブアップをする他に、問題を投稿したり、ランキングで競うことができます。
または
ログインせずに解答する
この問題を解いた人はこんな問題も解いています
$0<m<n$ とする。以下の等式を満たす自然数 $m,n$ を全て求めよ。 $$\frac{(m+n-1)^4-(m+n-2)^4+m-n+1}{4(m+n-1)+m-n}=2026$$
$m,n$ の値をカンマ(,)で区切り、答えが複数ある場合は行を分けて答えてください。
例 1,2 12,34
$n>10$ とする。 $n$ 進法で $2026_{(n)}$ と表される自然数が $2026$ で割り切れるような自然数 $n$ を小さいものから $3$ つ足し合わせた数を答えよ。
必要なら $1013$ は素数であること、 $m^2 \equiv 937 \pmod {1013}$ を満たす $1013$ 以下の自然数 $m$ は $2$ つのみで、その $1$ つが $472$ であることを用いてよい。
以下の二つの等式を満たす自然数 $a,b,c$ の組を全て求めよ。 $$\begin{cases} a-b=3c \\ a^3-b^3-c^3=c^5 \end{cases}$$
$a,b,c$ の値をカンマ(,)で区切り、答えが複数ある場合は行を分けて答えてください。
例 1,2,3 12,34,56
以下の等式を満たす自然数 $a,b,c$ の組を全て求めよ。 $$a^b(c-1)+a+c=2^{bc-1}-a-b=2026$$
$n$進法でも$n+1$進法でも$3$桁の回文数になるような正の整数をn-今年の数と定義します. たとえば,$2026$は$13$進法で$BCB_{(13)}$,$14$進法で$A4A_{(14)}$となるので13-今年の数です. すべての7-今年の数について,その総和を求めてください. ただし,$n$進法における$3$桁の回文数とはある正整数$X(1\le X\le n-1),Y(0\le X\le n-1)$を用いて$XYX_{(n)}$と表せる数のこととします.
ab-3c-d^2 = e …① 3cd+d^2+e^2 = abd …② a+8+2d = b …③ a+11+e = b+3 …④ を全て満たす自然数の組(a,b,c,d,e)のうち、a+b+c+d+eが最小となるようなものを求めよ。
a+b+c+d+e の値を半角数字で
以下の式を満たす正整数の組 $(x,y,z)$ すべてについて,$xyz$ の総和を求めてください. $$x^3+y^3+z^3+\dfrac{xyz}{16}=2026$$
x,y,zを自然数とする。 xy+xz = x+y+z となるような(x,y,z)の組はいくつあるか。
数字のみを記入すること。例:3組ある場合は 3
自然数 $a,b,c$ が互いに異なる自然数であるとき $$N=(9a-1)^2+9b^2+9c^2=(9a+1)^2-9b^2-9c^2$$と表される自然数 $N$ の最小値を求めよ。
$N=p^q-pq$とします。$N-1$が平方数、$p,q,\frac{N}{2},N+1,N+3$がいずれも素数になるような$N$としてありうる最小の値を求めてください。
半角整数で答えてください。
$a_{1},a_{2}, \cdots , a_{1500}$ は $1$ 以上 $3$ 以下の整数からなる数列であり,$a_{1501}=a_{1} =1,a_{1502}=a_{2}$ と定義すると全ての $1500$ 以下の正整数 $k$ で $a_{k+1} \neq a_{k}$ が成り立ち,かつ $1500$ 以下の正整数 $i$ のうち,
・$(a_{i},a_{i+1})=(1,3)$ となるものがちょうど $132$ 個 ・$(a_{i},a_{i+1})=(2,1)$ となるものがちょうど $213$ 個 ・$(a_{i},a_{i+1})=(3,2)$ となるものがちょうど $321$ 個 ・$(a_{i},a_{i+1},a_{i+2})=(1,2,3)$ となるものがちょうど $123$ 個
ずつ存在します.この数列としてありうるものの数が $3$ で割れる最大の回数を求めてください.(電卓の使用を推奨します.)
半角数字で解答してください.
$n$ 以下の正整数のうち $n$ と互いに素なものの個数を表す $φ(n)$ を $a$ 回合成した関数を $φ^a(n)$ と書くとき、$φ^a(n)=1$ を満たす最小の $a$ が $8$ であるような $n$ の最小値と最大値の積を解答してください。
半角数字で入力してください。