【補助線主体の図形問題 #001】
2013年よりツイッターなどで補助線主体の初等幾何の問題を披露してきたtb_lbと申します。このたびこの「ポロロッカ」を知り、今まで作ってきた問題を再発表することを決めました。気まぐれに投稿してまいりますので、見かけた際にはどうぞよろしくお願いします。
さて、ご挨拶代わりの1問目は易しめに抑えてみました。答えを出すだけなら代数的な処理で十分ですが、いささか面倒です。適切な補助線を引くと面倒な計算を避けることができますので、ぜひ補助線解法を考えてみてください。
${\def\cm{\thinspace \mathrm{cm}}}$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。
(例) $12\cm^2$ → $\color{blue}{12.00}$ $10\sqrt{2}\cm^2$ → $\color{blue}{14.14}$ $\dfrac{1+\sqrt{5}}{2} \cm^2$ → $\color{blue}{1.62}$
入力を一意に定めるための処置です。
たとえば答えに無理数を含む場合、$\sqrt{2}=1.41$や$\pi=3.14$などでは必要な桁が足りない場合があるのでご注意ください。
近似値を求める際には、関数電卓やグーグルの電卓機能、Wolfram|Alpha https://www.wolframalpha.com などのご利用をお勧めします。
初等幾何において面積を求める方針は
などが挙げられます。当問ではどの方針が有効でしょうか。
今回は「平行線の等積変形」が有効です。どの線分に平行な直線を引けばいいでしょうか。
頂点$\mathrm{A}$を通り、辺$\mathrm{EF}$に平行な直線を引きます。
$\mathrm{AB}=a$、$\mathrm{BC}=b$などとおいて文字式のまま面積を求めてみると、最後に$a$と$b$がきれいに消えるはずです。
この問題を解いた人はこんな問題も解いています