正方形・正三角形・円が図のように配置されているとき、色を付けた角の角度の差(の絶対値)を解答してください。
半角数字で0以上180未満の整数を解答してください。 「度」や「°」などの単位を付けずに解答してください。
Discordでログイン パスワードでログイン
ログインすると? ログインすると、解答・ギブアップをする他に、問題を投稿したり、ランキングで競うことができます。
または
ログインせずに解答する
この問題を解いた人はこんな問題も解いています
図の条件の下で、緑で示した三角形の面積を求めてください。
半角数字で解答してください。
図の条件において、$x$ の長さを求めてください。 なお、図中オレンジの点は直角三角形の内心です。
解答は $x=\sqrt a$ となります。$a$ を半角数字で解答してください。
$\angle C=90°$ である $\triangle ABC$ において, $C$ から $AB$ へおろした垂線の足を $P$ , $\angle C$ の二等分線と $AB$ との交点を $Q$ とします. $AQ=3,BQ=4$ のとき, $PQ$ の長さを求めてください. (下図には $CP⊥AB$ であることが書かれていませんので, 注意してください. )
互いに素な正整数 $a,b$ によって $PQ=\dfrac{a}{b}$ と表せるので, $a+b$ の値を半角数字で解答してください.
図の条件の下で,線分 $AB$ の長さを求めてください. ※orthocenter:垂心,circumcenter:外心
$AB^2$ の値は互いに素な正整数 $a,b$ を用いて $\dfrac{a}{b}$ と表せるので,$a+b$ の値を解答してください.
正方形に図のように線を引きました。外側の正方形の一辺が10のとき、青で示した部分の面積を求めてください。
解答は自然数 $a,b$ によって $\dfrac{a}{b}$ と表せるので $a+b$ の値を半角数字で解答してください。
正六角形内に、図のように円を配置しました。青で示した角の大きさを求めてください。
$\angle x=a°$ です。$a$ に当てはまる0以上180未満の数値を半角で回答してください。
図の条件の下で、青で示した線分の長さを求めてください。
図の条件の下で、青で示した角の大きさを求めてください。
解答を度数法で表し、0以上180未満の数値を半角数字で解答してください。 単位("度・°"など)はつけないでください。
図の条件の下で、赤で示した線分の長さを求めてください。
解答を弧度法で表すと、$x=\dfrac{a}{b}\pi$ です。$a+b$を解答してください。 ただし、$a,b$ は互いに素な正整数で、$0\leq \dfrac{a}{b} \lt 1$ を満たします。
正方形・正三角形・円を組み合わせた以下の図について、$x$で示した角の大きさを求めてください。
半角数字で、0以上180未満の整数を解答してください。 「度」や「°」などの単位を付けないよう注意してください。
正方形と正三角形を組み合わせた図のような図形について, 青で示した角の大きさを求めてください.
0以上180未満の整数を半角数字で解答してください。 ただし度数法で、単位を付けずに解答してください。