図の条件を満たす図形について、青で示された線分の長さを求めてください。
半角数字で解答してください。
Discordでログイン パスワードでログイン
ログインすると? ログインすると、解答・ギブアップをする他に、問題を投稿したり、ランキングで競うことができます。
または
ログインせずに解答する
この問題を解いた人はこんな問題も解いています
2つの合同な長方形を図のように配置しました。赤い三角形の面積が10のとき、青い凹四角形の面積を求めてください。
長方形の4頂点と、ある1点を結びました。青い部分の面積の合計が10のとき、赤い三角形の面積を求めてください。
半円と直角三角形を組み合わせた以下の図について、青で示した線分と赤で示した線分の長さの比を求めてください。
$\left(\dfrac{x}{y}\right)^2$ の値を半角数字で解答してください。
長方形に内接する半円があります。青い三角形の面積が9のとき、赤い線分の長さを求めてください。
図の条件の下で、水色で示した三角形の面積を求めてください。
求める面積 $x$ は互いに素な正整数 $a,b$ を用いて $x=\dfrac{a}{b}$ と表せるので、$a+b$ を解答してください。
2つの直角二等辺三角形が、それらの斜辺が交点をもつように配置されています。青い線分の長さが10、Xで示した角が鈍角のとき、赤い線分の長さを求めてください。 ただし、同じ色で示した線分の長さはそれぞれ等しいです。
(赤い線分の長さ)$=[ア]\sqrt{[イ]}$ となります。 ただし、$[ア],[イ]$にはそれぞれ自然数が入ります。$[ア]+[イ]$を解答してください。また、$[イ]$に入る自然数はできるだけ小さくしてください。 例: (赤い線分の長さ)$=3\sqrt5$ なら、$3+5\rightarrow8$と解答
図の条件の下で,青で示した線分の長さを求めてください. ※頂角 $30°$ の合同な二等辺三角形
$x^2$ の値を半角数字で解答してください.
$\sin1°$ は有理数か。
証明を簡潔に記述してください。
2つの正六角形を組み合わせた、図のような七角形があります。青で示した部分の面積が49、赤で示した部分の面積が28のとき、緑で示した三角形の面積を求めてください。
【補助線主体の図形問題 #062】 今週の図形問題は経験の多寡で難易度の感じられ方が大きく変わるかもしれません。自信のある方は暗算で、そうでない方も紙&ペンを使いながらじっくり補助線を引きつつお楽しみください。
${\def\cm{\thinspace \mathrm{cm}}}$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。 (例) $12\cm$ → $\color{blue}{12.00}$ $10\sqrt{2}\cm$ → $\color{blue}{14.14}$ $\dfrac{1+\sqrt{5}}{2} \cm$ → $\color{blue}{1.62}$ 入力を一意に定めるための処置です。 たとえば答えに無理数を含む場合、$\sqrt{2}=1.41$や$\pi=3.14$などでは必要な桁が足りない場合があるのでご注意ください。 近似値を求める際には、関数電卓やグーグルの電卓機能、Wolfram|Alpha https://www.wolframalpha.com などのご利用をお勧めします。
$\angle C=90°$ である $\triangle ABC$ において, $C$ から $AB$ へおろした垂線の足を $P$ , $\angle C$ の二等分線と $AB$ との交点を $Q$ とします. $AQ=3,BQ=4$ のとき, $PQ$ の長さを求めてください. (下図には $CP⊥AB$ であることが書かれていませんので, 注意してください. )
互いに素な正整数 $a,b$ によって $PQ=\dfrac{a}{b}$ と表せるので, $a+b$ の値を半角数字で解答してください.
図の条件の下で、$x$ で示した角の大きさを求めてください。 ただし、外側の三角形は鋭角三角形であるとします。
$x=a$ 度です $(0<a<30)$ 。$a$ の値を半角数字で解答してください。