全問題一覧

カテゴリ
以上
以下

C

Nyarutann 自動ジャッジ 難易度:
3月前

51

問題文

$1$ 辺の長さが $10$ である正方形 $ABCD$ の内部に点 $P$ をとると,$△ACP$ と $△BDP$ の面積がどちらも $10$ になりました.$P$ から $AB$ に下ろした垂線の足を $E$ としたとき,$AE$ の長さとしてありうる値の総積を求めてください.

解答形式

半角数字で解答してください。

D

poino 自動ジャッジ 難易度:
3月前

58

問題文

正整数 $a,b$ の最大公約数は $12$ ,最小公倍数は $360$ でした.このとき $(a,b)$ としてあり得る組すべてについて $a+b$ の総和を求めてください.

解答形式

半角数字で解答してください.

A

poino 自動ジャッジ 難易度:
3月前

48

問題文

実数 $a,b$ が $a+b=10$ を満たすとき,$a^3+b^3$ の最小値を求めてください.

解答形式

半角数字で解答してください.

B

poino 自動ジャッジ 難易度:
3月前

48

問題文

赤いボールと青いボールがそれぞれ十分に入っている袋から $50$ 個のボールを取り出して一列に並べました.このとき,次の条件を満たす取り出し方において,取り出した青いボールの個数としてあり得る値の総和を求めてください.
 ・連続する $3$ 個のボールの少なくとも $1$ つは赤いボールである.

解答形式

半角数字で解答してください.

整数問題(2)

tsukemono 自動ジャッジ 難易度:
3月前

35

問題文

$\frac{n}{144}$が$1$より小さい既約分数になるような自然数$n$の個数を求めよ。

解答形式

半角算用数字で答えてください。

整数問題(1)

tsukemono 自動ジャッジ 難易度:
3月前

8

問題文

$504$と自然数$x$との最大公約数を$g$, 最小公倍数を$l$とする。$504$の正の約数の個数を$n$としたとき、$g$の正の約数の個数は$\frac{n}{3}$、$l$の正の約数の個数は$\frac{9n}{2}$であった。$x$の素因数が$2,3,5,7$であるとき、$l$の値を求めよ。

解答形式

半角算用数字で答えてください。

自作問題No.2

Tehom 自動ジャッジ 難易度:
3月前

14

問題文

$64$個の球 $a_0,a_1,...a_{63}$それぞれを白色と黒色で塗り分ける方法で、以下の条件を満たすものは何通りありますか

・任意の整数 $i,j$ $(0\leqq i\leqq7,0\leqq j\leqq4)$ に対し、
$\lbrace a_{8i+j},a_{8i+j+1},a_{8i+j+2},a_{8i+j+3}\rbrace$ に含まれる白色の球と黒色の球が共に偶数個
かつ、
 任意の整数 $k,l$ $(0\leqq k\leqq4,0\leqq l\leqq7)$ に対し、
$\lbrace a_{8k+l},a_{8k+l+8},a_{8k+l+16},a_{8k+l+24}\rbrace$ に含まれる白色の球と黒色の球が共に偶数個

解答形式

半角数字で解答してください.

よくわからないGame

Weskdohn 自動ジャッジ 難易度:
3月前

8

問題

Weskdohn君は,次のゲームを行うことになりました.

正$733$角形のマークが書かれたカードW:$W_1W_2 \ldots W_{733}$から一枚選ぶ操作をOPE1と言い,これを$X$回繰り返します.
但し$X$について次の事実がわかっています.

正$3$角形のマークが書かれたカードS:$S_1S_2 S_3$と正$281$角形のマークが書かれたカードN:$N_1N_2 \ldots N_{281}$
について,それぞれ一枚ずつ取り出す操作をOPE2といい,OPE2を973回繰り返した場合の数を$X$通りとする.


ゲームで選んだカードWの組み合わせは$Y$通りと書けるので,$Y_{[9]}$の下三桁$n$を求めて下さい.

但し,異なる番号が振られた同じ種類のカード(例えば$E_d$と$E_h$)は互いに区別できるとし,また$O_{[K]}$は,$O$を$K$進法で書いた時の値とします.

解答形式

求めた値を,半角で入力して下さい.
ex)答えが6106→6106と入力.
また,001のような数値が答えの場合は、0をなくさず001のまま回答して下さい.

KOTAKE杯(E)

MrKOTAKE 自動ジャッジ 難易度:
3月前

40

問題文

△ABCがあり,△ABCの外接円における点Aの接線と直線BCは直交し,
AB=15, AC=20であった. このとき△ABCの面積を解答しなさい.

解答形式

答えは正の整数値となるので, その整数値を半角で入力してください

KOTAKE杯(O)

MrKOTAKE 自動ジャッジ 難易度:
3月前

32

問題文

△ABCの重心をGとするとAB=5, AC=7, BG=2であった.
このときCGの長さの2乗を解答してください.

解答形式

答えは正の整数値となるので, その整数値を半角で入力してください.

KOTAKE杯(D)

MrKOTAKE 自動ジャッジ 難易度:
3月前

64

問題文

△ABCの内心をI,外心をOとする.
∠AIB=145°のとき∠AOBの角度を度数法で解答してください.

解答形式

答えは正の整数値となるので, その整数値を半角で入力してください.

KOTAKE杯(H)

MrKOTAKE 自動ジャッジ 難易度:
3月前

41

問題文

中心をOとする円上に点A,Bがあり,線分AB上に点PをとるとAB=7, AP=2, OP=3であった.
このときAOの長さの2乗を解答してください.

解答形式

答えは正の整数値となるので, その整数値を半角で入力してください.