全問題一覧

カテゴリ
以上
以下

masorata

公開日時: 2025年8月16日21:00 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 自動ジャッジ

まそらた杯 微分 微分積分 微積分

問題

以下の問いに答えよ。

(1)$a,b,c,d$ はいずれも $0$ でない実数の定数で、 $ad-bc\neq 0$ を満たしている。実数 $\displaystyle x\neq -\frac{d}{c} $ に対して関数 $f(x)$ を

$$
\displaystyle f(x)=\frac{ax+b}{cx+d}
$$

と定義すると、

$$
\frac{3\left(f''(x)\right)^2-2f'(x)f'''(x)}{\left(f'(x)\right)^2}
$$

の値は $a,b,c,d$ や $x$ によらないある整数となる。その値を求めよ。

(2)実数 $x$ に対して関数 $g(x)$ を

$$
\displaystyle g(x)=\frac{e^{4x+816}-e^{-4x-816}} {e^{4x+817}+e^{-4x-817}} \ \ \
$$

と定義すると、

$$
\displaystyle \frac{3\left(g''(x)\right)^2-2g'(x)g'''(x)}{\left(g'(x)\right)^2}
$$

の値は $x$ によらないある整数となる。その値を求めよ。

解答形式

0から9までの半角数字および-(マイナス)のうち、必要なものを用いて解答せよ。

(1)の答えを1行目に入力せよ。

(2)の答えを2行目に入力せよ。

たとえば、(1)に $816$、(2)に $-817$ と回答したいときは、

816
-817

と入力せよ。

OyoYo

公開日時: 2024年12月24日16:49 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 採点者ジャッジ

微分 対数微分

$$y={x^{x}}^{x}の導関数y'=\frac{dy}{dx}を求めよ。$$

Ultimate

公開日時: 2024年12月6日22:17 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 自動ジャッジ

微分 数III 方程式

問題文

解答形式

◻︎に当てはまる数字を半角数字で入力してください。

skimer

公開日時: 2024年9月23日0:23 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 自動ジャッジ

高校数学 数学 微分 最大最小

問題文

$f(x)=\frac{3-x}{ \sqrt{3(x+2)(-2x+1)}}$ $ (-2<x<0)$ とする
$f(x)$ が最小値を取るときの $x$ の値を求めよ

解答形式

解答は$-\frac{㋐}{㋑}$の形で表されるので、1行目に㋐を、2行目に㋑を半角数字で入力してください

skimer

公開日時: 2024年8月31日2:03 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 採点者ジャッジ

高校数学 数学 微分 大小関係 数Ⅲ

問題文

$$x≧5のとき\hspace{2mm}
(x-1)^{x+1}>x^{x}\hspace{2mm}が成り立つことを示せ。$$

$$ただし、e^{1.375}=3.9\hspace{3mm}e^{-1.375}=0.25とする。$$

解答形式

記述でお願いします

PonPon

公開日時: 2022年8月26日23:48 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 自動ジャッジ

微分 指数対数 数の評価

問題

以下の問に関して, $2.71<e<2.72$ , $3.14<π<3.15$ とする.

(1) $a≠0$ のとき $a+1$ , $e^a$ の大小を比較せよ.

(2) $α>0$ かつ $β>0$ かつ $α≠β$ のとき,
$\hspace{11pt} $ $α-β$ , $β(logα-logβ)$ の大小を比較せよ.

(3) $e^π$ , $π^e$ の大小を比較せよ.

(4) $e^{e^e},e^{e^π},e^{π^e},e^{π^π},π^{e^e},π^{e^π},π^{π^e},π^{π^π} $ の大小を比較せよ.
$\hspace{11pt} $ここで, $a^{b^c}$は $a^{(b^c)} $を表す.

解答形式

(1) ① $a+1$ ② $e^a$
(2) ① $α-β$ $\:$② $β(logα-logβ)$
(3) ① $e^π$ ② $π^e$
(4) ①$e^{e^e}$②$e^{e^π}$③$e^{π^e}$④$e^{π^π}$⑤$π^{e^e}$⑥$π^{e^π}$⑦$π^{π^e}$⑧$π^{π^π} $
として問ごとに改行し,小さい順に左から半角数字を用いて並べよ.
(例)12345678