全問題一覧

カテゴリ
以上
以下

${}$ 西暦2024年問題第2弾です。第1弾に引き続き虫食算で、今回は割り算にしてみました。数学的手法(約数や倍数、偶奇性や剰余、不等式による絞り込み、などなど)を適宜用いることで面倒な場合分けや仮置きを軽減できるよう仕込んでいるのは変わりません。パズル的に解くのもよし、数学的にゴリゴリ解くのもよし、どうぞお好きなようにお楽しみください!

解答形式

${}$ 解答は2行目を「被除数÷除数」の形で入力してください。
(例) $2024 \div 102 = 19$ 余り $86$ → $\color{blue}{2024 \text{÷} 102}$
 入力を一意に定めるための処置です。数字は半角で、「÷」の演算記号はTeX記法(\div)でも、絵文字や環境依存文字でもなく、全角記号の「÷」でお願いします。空白(スペース)も入れる必要はありません。


${}$ 2024年、あけましておめでとうございます。本年もよろしくお願いいたします。
 さて、新年数日は図形問題をお休みして、西暦である2024を織り込んだ数学やパズルの問題をお送りします。
 初日・2日目は虫食算です。虫食算というと確定マスから埋めていき、時には場合分けや仮置きを利用するのが定番の手法ですが、僕が作る虫食算は数学的手法(約数や倍数、偶奇性や剰余、不等式による絞り込み、などなど)を適宜用いることで面倒な場合分けや仮置きを軽減できるようにしています。とはいえ、解き方は自由です。お好きなようにパズルなひと時をお楽しみください。

解答形式

${}$ 解答は上2行を「被乗数×乗数」の形で入力してください。
(例) $2024 \times 101 = 204424$ → $\color{blue}{2024 \text{×} 101}$
 入力を一意に定めるための処置です。数字は半角で、「×」の演算記号はTeX記法(\times)でも、絵文字や環境依存文字でもなく、全角記号の「×」でお願いします。空白(スペース)も入れる必要はありません。

三角形の性質

sakagamisinobanai 採点者ジャッジ 難易度:
16月前

5

問題文
三角形ABCがあり、角BAC=90°、BCの中点をMとしたとき角ACB=45°でありAMの長さは2である。この三角形の面積を求めなさい。

解答形式

素数の魔方陣

326_math 自動ジャッジ 難易度:
21月前

4

問題文


4×4の格子に,次の規則に従って,1マスに1つずつ,素数を入れる.

規則

・どの縦・横・斜めに並ぶ4つの数の和も,すべて等しくなるようにする.
・同じ数は2回以上使わない.

いま,図のように,一部のマスに数が記入されており,残りのマスに適切な数を入れることで,上の規則を満たすようにすべてのマスを埋めることができる.このとき,?のマスに当てはまる数を求めよ.

解答形式

半角数字で解答してください.


西暦2023年問題第2弾です。第1弾に引き続き虫食算で、今回は掛け算にしてみました。数学的手法(約数や倍数、偶奇性や剰余、不等式による絞り込み、などなど)を適宜用いることで面倒な場合分けや仮置きを軽減できるよう仕込んでいるのは変わりません。パズル的に解くのもよし、数学的にゴリゴリ解くのもよし、どうぞお好きなようにお楽しみください!

解答形式

${}$ 解答は上2行を「被乗数×乗数」の形で入力してください。
(例) $102 \times 2023 = 206346$ → $\color{blue}{102 \text{×} 2023}$
 入力を一意に定めるための処置です。数字は半角で、「×」の演算記号はTeX記法(\times)ではなく全角記号の「×」でお願いします。


${}$ 2023年、あけましておめでとうございます。本年もよろしくお願いいたします。
 さて、新年数日は図形問題をお休みして、西暦である2023を織り込んだ数学やパズルの問題をお送りします。
 初日・2日目は虫食算です。虫食算というと確定マスから埋めていき、時には場合分けや仮置きを利用するのが定番の手法ですが、僕が作る虫食算は数学的手法(約数や倍数、偶奇性や剰余、不等式による絞り込み、などなど)を適宜用いることで面倒な場合分けや仮置きを軽減できるようにしています。とはいえ、解き方は自由です。お好きなようにパズルなひと時をお楽しみください。

解答形式

${}$ 解答は2行目を「被除数÷除数」の形で入力してください。
(例) $2023 \div 101 = 20$ 余り $3$ → $\color{blue}{2023 \text{÷} 101}$
 入力を一意に定めるための処置です。数字は半角で、「÷」の演算記号はTeX記法(\div)ではなく全角記号の「÷」でお願いします。


${}$ 西暦2022年問題第2弾です。第1弾に引き続き虫食算で、今回は割り算にしてみました。数学的手法(約数や倍数、偶奇性や剰余、不等式による絞り込み、などなど)を適宜用いることで面倒な場合分けや仮置きを軽減できるよう仕込んでいるのは変わりません。パズル的に解くのもよし、数学的にゴリゴリ解くのもよし、どうぞお好きなようにお楽しみください!

解答形式

${}$ 解答は2行目を「被除数÷除数」の形で入力してください。
(例) $2022 \div 102 = 19$ 余り $84$ → $\color{blue}{2022 \text{÷} 102}$
 入力を一意に定めるための処置です。数字は半角で、「÷」の演算記号はTeX記法(\div)ではなく全角記号の「÷」でお願いします。


${}$ 2022年、あけましておめでとうございます。本年もよろしくお願いいたします。
 さて、新年数日は図形問題をお休みして、西暦である2022を織り込んだ数学やパズルの問題をお送りします。
 初日・2日目は虫食算です。虫食算というと確定マスから埋めていき、時には場合分けや仮置きを利用するのが定番の手法ですが、僕が作る虫食算は数学的手法(約数や倍数、偶奇性や剰余、不等式による絞り込み、などなど)を適宜用いることで面倒な場合分けや仮置きを軽減できるようにしています。とはいえ、解き方は自由です。お好きなようにパズルなひと時をお楽しみください。

解答形式

${}$ 解答は上2行を「被乗数×乗数」の形で入力してください。
(例) $2021 \times 2022 = 4086462$ → $\color{blue}{2021 \text{×} 2022}$
 入力を一意に定めるための処置です。数字は半角で、「×」の演算記号はTeX記法(\times)ではなく全角記号の「×」でお願いします。

論理パズル

SU-JACK 自動ジャッジ 難易度:
3年前

13

問題文

2つの部屋があり、双方の部屋に男女が数人ずつ入っている。部屋Aにいる女性の人数は部屋Bにいる男性の人数より多いが、男性全体の人数は女性全体の人数より多い。この場合、部屋Aにいる人の数の方が部屋Bにいる人の数の方よりも常に多くなる。

上記は正しいか。

解答形式

「正しい」又は「正しくない」で回答してください。