数学の問題一覧

カテゴリ
以上
以下

KOTAKE杯(B)

MrKOTAKE 自動ジャッジ 難易度:
2月前

51

問題文

AB=60, BC=70, CA=80の△ABCがあり,内心をIとしたとき
AIの長さを解答してください.

解答形式

答えは正の整数値となるので, その整数値を半角で入力してください.

KOTAKE杯(O)

MrKOTAKE 自動ジャッジ 難易度:
2月前

32

問題文

△ABCの重心をGとするとAB=5, AC=7, BG=2であった.
このときCGの長さの2乗を解答してください.

解答形式

答えは正の整数値となるので, その整数値を半角で入力してください.

韓国産高校数学問題 - 1

nflight11 自動ジャッジ 難易度:
3月前

7

問題文

すべての正整数 $n$ に対して $a_{n+1}=a_{n}+a_{n+2}$ を満たす数列 $\{a_n\}$ に対して、次の式が成立する。

$$\sum_{n=1}^\infty \frac{a_n}{2^n}=1998, \sum_{n=1}^\infty \frac{a_{3n}}{3^n}=1106$$

この時、$|a_{1998}a_{1106}|$を求めよ。

解答形式

答えをそのまま入力しなさい。

昔作って評判よかった300G

MrKOTAKE 自動ジャッジ 難易度:
3月前

2

問題文

△ABCがあり,また点Cを通る点BでABに接する円Oがある.円O上でありかつ
△ABCの内部にBD=CDとなる点DをとりACと円Oの交点のうちCでないものをEとおくと
AB=15 BC=10 DE=16であった.このときACの長さの2乗は互いに素な正整数a,bによってa/bと表されるのでa+bの値を解答してください.
ただし点A,C,EはACEの順に一直線上に並んでいるものとする。

解答形式

答えは正の整数値となるので, その整数値を半角で入力してください.

100G

MrKOTAKE 自動ジャッジ 難易度:
3月前

14

問題文

中心がOの円と線分ABの二つの交点のうちAから近い順にC,Dとすると
BO=11, CO=7, AC=CD=DB であった.
このとき△ABOの面積の2乗を解答してください.

解答形式

答えは正の整数値となるので, その整数値を半角で入力してください.

格ゲー大会

YoneSauce 自動ジャッジ 難易度:
3月前

9

問題文

$A$ さんを含む $10$ 人の選手がゲームの格ゲー大会総当たり形式で行いました.
 $A$ さん以外の $9$ 人の選手は以下の条件を満たしているとき, $A$ さんの勝利した回数としてあり得るものの総和を求めてください.
 しかし,引き分けは考えないものとします.

  • $9$ 勝 $0$ 敗の選手がちょうど $1$ 人いる.
  • $7$ 勝 $2$ 敗の選手がちょうど $1$ 人いる.
  • $6$ 勝 $3$ 敗の選手がちょうど $3$ 人いる.
  • $2$ 勝 $7$ 敗の選手がちょうど $3$ 人いる.
  • $0$ 勝 $9$ 敗の選手がちょうど $1$ 人いる.

解答形式

非負整数を半角数字で答えてください.

OMC不採用問題2

sta_kun 自動ジャッジ 難易度:
3月前

10

問題文

$b−a$ が $3$ の倍数で,$a+b+c=2024$ を満たす非負整数の組 $(a,b,c)$ すべてについて,
$$\dfrac{2024!}{a!b!c!}×3^a×3^b×4^c$$
を足し合せた値を $S$ とします.$S$ の各桁の和を求めてください.

解答形式

半角数字で解答してください.
不備等あれば教えて下さい.

200G

MrKOTAKE 自動ジャッジ 難易度:
3月前

11

問題文

AB=5, AC=7の△ABCがあり重心をG,内心をIとするとBC//GIであった. このとき△ABCの面積の2乗を解答してください.

解答形式

答えは正の整数値となるので, その整数値を半角で入力してください.

正六角形:1→2→3→4

kusu394 自動ジャッジ 難易度:
3月前

1

問題文

正角形 $ABCDEF$ について,辺 $AB,BC,DE, EF$ 上にそれぞれ点 $P,Q,R,S$ があり,
$$AP =1,\ \ BQ =2,\ \ DR =3,\ \ ES =4$$ が成り立ちます.四角形 $PQRS$ の面積が $64\sqrt3$ のとき,正六角形の一辺の長さは正の整数 $a,b$ を用いて $a + \sqrt b$ と表せるので $a+b$ の値を解答してください.

解答形式

答えは正の整数値となるので,その整数値を半角で入力してください.

今日の因数分解 第60回

Lamenta 自動ジャッジ 難易度:
3月前

19

問題文

$\:2024≧a>b>c≧1\:$なる正整数の組$\:(a,b,c)\:$であって、$x^a+x^b+x^c+1\:$が$\:(x+1)\:$を因数に持つようなものは何通りあるか解答してください。

解答形式

半角数字で解答してください。

幾何作問練習2

Lamenta 自動ジャッジ 難易度:
3月前

16

問題文

$AB=AC$なる鋭角二等辺三角形$ABC$において$AB$,$BC$の中点をそれぞれ$M$,$N$とし、$MC$の垂直二等分線と$AN$の交点を$P$とします。$\triangle ABC$の面積は$15$であり、$AP:PN=4:1$であるとき、$BC^4$を解答してください。

解答形式

半角数字で解答してください。

400G

poino 自動ジャッジ 難易度:
3月前

7

問題文

三角形 $ABC$ の垂心を $H$ とし、$AH$ と $BC$ の交点を $D$、$BC$ の中点を $M$ とすると、$B,D,M,C$ がこの順に並びました。$AH$ を直径とする円と $AM$ の交点のうち $A$ でない方を $X$ とすると、$∠CXM=∠BAM$ でした。$BD=23,DM=42$ のとき、三角形 $ABC$ の面積を解答してください。

解答形式

半角数字で入力してください。