数学の問題一覧

カテゴリ
以上
以下

shippe

公開日時: 2025年9月6日22:49 / ジャンル: 数学 / カテゴリ: 競技数学 / 難易度: / ジャッジ形式: 自動ジャッジ

整数 数学

問題文

$$
p^{q+r} +q^{p+r} +r^{p+q}が素数となるような10以下の素数の組(p,q,r)の個数を求めよ。
$$

解答形式

半角数字で解答してください。覚悟して解いてください。

Sry

公開日時: 2025年9月6日14:32 / ジャンル: 数学 / カテゴリ: 競技数学 / 難易度: / ジャッジ形式: 自動ジャッジ


問題

$実数全体で定義され、実数値を取る定数でない関数f(x)がある。$
$この関数が任意の実数x,yについて恒等式$
$$f(x^2+y)=f(kx^2+2y)-f(3x^2)$$
$を満たすとき、定数kの値を求めよ。$

shippe

公開日時: 2025年9月5日23:52 / ジャンル: 数学 / カテゴリ: 競技数学 / 難易度: / ジャッジ形式: 自動ジャッジ

整数 数学

問題文

₁₃₅C₃₀を7で割った余りを求めてください。

解答形式

半角数字で入力してください。

kinonon

公開日時: 2025年9月3日21:18 / ジャンル: 数学 / カテゴリ: 競技数学 / 難易度: / ジャッジ形式: 自動ジャッジ


問題文

三角形 $ABC$ において,角 $A,B,C $の傍接円の半径をそれぞれ $r_A,r_B,r_C$ とし,内接円の半径を $r $とする.このとき,三角形 $ABC$ が以下の条件を満たすとき$r_A\cdot r_B\cdot r_C \cdot r$の最大値を求めよ.
$$BC=28,∠BAC=60 $$

解答形式

自然数となるので、その値を入力してください

Weskdohn

公開日時: 2025年9月3日17:58 / ジャンル: 数学 / カテゴリ: 競技数学 / 難易度: / ジャッジ形式: 自動ジャッジ


問題文

次の等式を満たすような $10000$ 以下の正整数の組 $(a,b,c)$ の個数を求めて下さい.

$$160a^2+153b^2+25c^2=24ab+96bc+72ac$$

解答形式

半角数字で入力して下さい.

udonoisi

公開日時: 2025年8月31日21:55 / ジャンル: 数学 / カテゴリ: 競技数学 / 難易度: / ジャッジ形式: 自動ジャッジ


問題文

$\alpha^5-1=0$ を満たす複素数 $\alpha$ に対して関数 $f$ を $f(x)=\alpha x+1$ で定義したとき,
$f^{100}(1)$ としてありうる値の総和をすべて求めてください. ただし,$f^{100}(x)$ は $f$ を $100$ 回合成した関数とします.

解答形式

例)非負整数を答えてください.

追記

ごめんなさい解答形式を書いてなかったです

Ryomanic

公開日時: 2025年8月30日22:57 / ジャンル: 数学 / カテゴリ: 競技数学 / 難易度: / ジャッジ形式: 自動ジャッジ


問題文

円Oが存在して、円O上に点A,B,C,Dをこの順に配置する。角ABD、角DCAそれぞれの二等分線の交点をE、角BAC、角CDBそれぞれの二等分線の交点をF、BDとACの交点をG、△ABG、△DCGそれぞれの内心をI,I’とする。
$$AB=\frac{19}{2},EF=11,△ABI=\frac{19}{2} $$
の時、四角形EIFI’の面積を求めよ。

解答形式

求める値は互いに素な正整数a,bでa/bと表せるので、a+bを解答してください。

katsuo_temple

公開日時: 2025年8月24日20:53 / ジャンル: 数学 / カテゴリ: 競技数学 / 難易度: / ジャッジ形式: 自動ジャッジ


問題文

三角形$ABC$において,$A,B,C$から対辺に下ろした垂線の足をそれぞれ$D,E,F$とし,垂心を$H$とします.三角形$DEF$の外接円と三角形$HBC$の外接円の交点を$P,Q$とし,$EF$の中点を$M$とします.直線$HM$と直線$PQ$の交点を$R$とすると,$DR$は$AB$の中点を通り,$BC$の中点を$N$とすると,$$ND=2 CE=5$$が成立しました.このとき,$AB$の長さの二乗は互いに素な正整数$a,b$を用いて$\dfrac{a}{b}$と表せるので,$a +b$の値を解答して下さい.

解答形式

半角で解答して下さい.

yu23578

公開日時: 2025年8月23日11:00 / ジャンル: 数学 / カテゴリ: 競技数学 / 難易度: / ジャッジ形式: 自動ジャッジ

素数

問題文

この問題は、Prime Prime Prime (Hard)と一部分一致しているため、相違点を赤色で強調しています。

$n$ 桁の素数であって,すべての $i,j$ $ (1 \le i $  $ j \le n)$ において, $i$ 桁目から $j$ 桁目までが素数である数のうち,最大のものを答えてください.
例えば, $23$ は $2(i=1,j=1),3(i=2,j=2),$$23(i=1,j=2)$ が全て素数なので条件を満たします.

解答形式

半角数字で解答してください.

GaLLium31

公開日時: 2025年8月23日11:00 / ジャンル: 数学 / カテゴリ: 競技数学 / 難易度: / ジャッジ形式: 自動ジャッジ


問題文

正三角形 $ABC$ の内部を以下のように歩く移動するペンギンがいる.

・ 常に直進するが,辺(頂点を除く)にぶつかった場合は,辺に対して今移動してきた直線と対称な直線へ方向転換する.頂点についた場合,その時点で歩行をやめる.

また,$0\leq p \leq 1$を満たす実数 $p$ に対して,$f(p)$を以下のように定める.

・$f(p)$は,$AC$ を $p:1-p$ に内分する点を $D$ とし,このペンギンがはじめ $B$ にいて、$D$ に向かって直進したときの,ペンギンの歩行が止まるまでに辺(頂点を除く)にぶつかった回数

正整数 $n$ に対して,$f(p)=n$ を満たす $p$ の総和が $9$ であったとき,$n$ としてありうる値の総積を求めてください.

解答形式

非負整数を半角英数字で解答してください.

GaLLium31

公開日時: 2025年8月23日11:00 / ジャンル: 数学 / カテゴリ: 競技数学 / 難易度: / ジャッジ形式: 自動ジャッジ


問題文

$30$ 人の人が $\pi$ ナポゥ君の主催するたけのこニョッキ大会に参加します.ルールは次の通りです.

  • $i=30,29, \dotsc,1$ の順に $1$ 人 $1$ つの数 $i$ を叫んでいき,最後まで叫ぶことができたら成功である.もし $i$ を複数人が叫んでしまったり,だれも叫ばなかったりした場合は失敗である.

なかなか成功しないことに気づいた $\pi$ ナポゥ君は,次のように八百長をすることにしました.

  • はじめに $30$ 人それぞれに正整数を与え,$i=30,29,\dotsc,1$ について以下を繰り返す.
    • まだ叫んでいない人の内,与えられた数が $i$ の約数もしくは倍数である人は,数 $i$ を叫ぶ.

このたけのこニョッキが成功するような,$30$ 人に与えられる正整数の総和の最小値を解答して下さい.

解答形式

半角数字で解答してください.

yu23578

公開日時: 2025年8月23日11:00 / ジャンル: 数学 / カテゴリ: 競技数学 / 難易度: / ジャッジ形式: 自動ジャッジ

整数 数学

問題文

この問題は、Prime Prime Prime (Easy)と一部分一致しているため、相違点を赤色で強調しています。

また、必要とされる素数表の大きさがOMCに乗っているものよりも大きいため、この問題に限り、外部の素数表の閲覧を許可します。

$n$ 桁の素数であって,すべての $i,j$ $ (1 \le i $  $ j \le n)$ において, $i$ 桁目から $j$ 桁目までが素数である数のうち,最大のものを答えてください.
例えば, $23$ は $23(i=1,j=2)$ が全て素数なので条件を満たします.

解答形式

半角数字で解答してください.