以下の条件1を満たす正整数列 $a_n\ (n \ge 1)$ を考える.
条件1:
$\cdot \ n\ge 1$ なる正整数 $n$ において, $a_{n+1}$ は $a_{n}$ 以下の正整数であって $a_{n}$ と互いに素なものの個数に等しい.
適切に $a_1$ を決めると以下の条件2が成立しました. このときの $a_1$ としてありうる値の個数を解答してください.
条件2:
$\cdot$ $a_1$ の任意の素因数は十進数表記で $1$ 桁である.
$\cdot$ 任意の $i,j \ge N$ なる整数 $(i,j)$ の組について, $a_i=a_j$ となる最小の $N$ が $N=13$ である.
解答を非負整数で入力してください.
三角形 $ABC$ の辺 $BC$ の中点を $M$ とし,辺 $AB,AC$ 上にそれぞれ点 $D,E$ をとると,以下が成立した:
$$\angle{DME}=90^{\circ},AD=6,DB=2,AE=7,EC=3$$
このとき,辺 $BC$ の長さの $2$ 乗を求めてください.
非負整数で解答してください.
以下の条件を満たすような $15$ 個の白石と $15$ 個の黒石の並べ方は何通りありますか.
非負整数で解答してください.
$$
(1)放物線y=2x^2+4ax+6bにおいて、頂点の座標を示して下さい。
$$
$$
(1)(a,{a}^2+6b)(2)(-2a,-2{a}^2-6b)(3)(-a,-2{a}^2+6b)(4)(-2a,-2{a}^2-6b)
$$
$$
(2)頂点の座標の軸が、-\frac{1}{2}≦x≦1のとき、aの値の範囲を示して下さい。
$$
$$
(1)-1≦a≦1(2)-1≦a≦3(3)-2≦a≦1(4)-1≦a≦3
$$
$$
(3)b=-aのときのaの最大値を示して下さい。
$$
$$
(1)\frac{7}{2}(2)\frac{9}{2}(3)\frac{11}{2}(4)\frac{13}{2}
$$
$$
三角形ABCについて、a=3,b=5,C={60}°\\における次の問に答えて下さい。
$$
$$
(1)辺cの長さ
$$
$$
(1)\sqrt{17} (2)\sqrt{18}(3)\sqrt{19}(4)\sqrt{21}
$$
$$
(2)外接円Rの長さ
$$
$$
(1)\frac{1}{2}\sqrt{53}(2)\frac{1}{3}\sqrt{57}(3)\frac{1}{4}\sqrt{61}(4)\frac{1}{5}\sqrt{66}
$$
(3)三角形Sの面積
$$
$$
$$
(1)\frac{13}{2}\sqrt{3}(2)\frac{15}{4}\sqrt{3}(3)\frac{17}{6}\sqrt{3}(4)\frac{19}{8}\sqrt{3}
$$
$$
x=\sqrt{3}+\frac{1}{\sqrt3},y=\sqrt{3}-\frac{1}{\sqrt3}のとき\\
$$
$$
(ⅰ)x+y
$$
$$
(1)\sqrt{3}(2)2\sqrt{3}(3)\sqrt{5}(4)2\sqrt{5}
$$
$$
(ⅱ)xy
$$
$$
(1)\frac{2}{3}(2)\frac{5}{3}(3)\frac{8}{3}(4)\frac{11}{3}
$$
$$
(ⅲ)x^3+y^3
$$
$$
(1)2\sqrt{3}(2)4\sqrt{3}(3)6\sqrt{3}(4)8\sqrt{3}
$$
$$
(ⅳ)x^5+y^5
$$
$$
(1)271\sqrt{3}-\frac{15}{2}(2)272\sqrt{3}-\frac{16}{3}(3)273\sqrt{3}-\frac{17}{4}(4)274\sqrt{3}-\frac{19}{5}
$$
$$
について答えて下さい。
$$