数学の問題一覧

カテゴリ
以上
以下

iwashi

公開日時: 2024年3月18日23:05 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 自動ジャッジ


問題文

$n$を自然数とする。$\displaystyle \sum_{k=1}^{n} n^k$を$8$で割った余りを$a_{n}$、 $\displaystyle S_{n}=\sum_{k=1}^{n}a_{k}$とする。すべての$n$に対して$a_{n+l}=a_{n}$が成り立つような自然数$l$の最小値と$S_{m+2025}=2S_{m}$が成り立つような自然数$m$の最大値を求めよ。

解答形式

1行目に$l$を,2行目に$m$を半角英数字で解答してください。例えば$l=123,m=456$とする場合

123
456

としてください。

Butterflv

公開日時: 2024年3月18日17:34 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 自動ジャッジ


問題文

以下の条件1を満たす正整数列 $a_n\ (n \ge 1)$ を考える.

条件1:

$\cdot \ n\ge 1$ なる正整数 $n$ において, $a_{n+1}$ は $a_{n}$ 以下の正整数であって $a_{n}$ と互いに素なものの個数に等しい.

適切に $a_1$ を決めると以下の条件2が成立しました. このときの $a_1$ としてありうる値の個数を解答してください.

条件2:

$\cdot$ $a_1$ の任意の素因数は十進数表記で $1$ 桁である.

$\cdot$ 任意の $i,j \ge N$ なる整数 $(i,j)$ の組について, $a_i=a_j$ となる最小の $N$ が $N=13$ である.

解答形式

解答を非負整数で入力してください.

nmoon

公開日時: 2024年3月18日17:15 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 自動ジャッジ


問題文

三角形 $ABC$ の辺 $BC$ の中点を $M$ とし,辺 $AB,AC$ 上にそれぞれ点 $D,E$ をとると,以下が成立した:

$$\angle{DME}=90^{\circ},AD=6,DB=2,AE=7,EC=3$$

このとき,辺 $BC$ の長さの $2$ 乗を求めてください.

解答形式

非負整数で解答してください.

nmoon

公開日時: 2024年3月18日17:13 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 自動ジャッジ


問題文

以下の条件を満たすような $15$ 個の白石と $15$ 個の黒石の並べ方は何通りありますか.

  • 任意の白石について,その石の左側にある黒石の個数は $2$ の倍数である.
  • 任意の黒石について,その石の左側にある白石の個数は $3$ の倍数である.

解答形式

非負整数で解答してください.

y

公開日時: 2024年3月17日16:11 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 自動ジャッジ


$$
\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{m}^{64}}}}}=\sqrt{\sqrt{\sqrt{\sqrt{256}}}}について\\、小さい方の解をαと置くとき、
$$
$$
\frac{2}{α}+\frac{α}{2}-{α}を答えて下さい。
$$
$$
(1)3(2)2(3)1(4)0
$$

noname

公開日時: 2024年3月17日13:46 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 自動ジャッジ

整数問題 素数 方程式

問題文

$p,q$を素数、$n$を整数とします。
$$
p^{4}+2q^{2}-2^{n}=635
$$
を満たす$p,q,n$の組$(p,q,n)$を全て求めてください。

解答形式

$p+q+n$の値の総和を半角で解答してください。

y

公開日時: 2024年3月17日10:07 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 自動ジャッジ


$$
0°≦x≦πのとき、-1+cos2x+4cosxにおける\\最小値、そのときの角度を求めて下さい。(cosx=tとおく)
$$
$$
(1)\begin{cases}-3\\30°\end{cases}(2)\begin{cases}-3\\60°\end{cases}(3)\begin{cases}-6\\120°\end{cases}(4)\begin{cases}-6\\180°\end{cases}
$$

y

公開日時: 2024年3月17日6:07 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 自動ジャッジ


$$
elementについて、次の問に答えて下さい。
$$
$$
(1)全部で何通りあるか答えて下さい。
$$
$$
(1)640(2)840(3)1040(4)1240
$$
$$
(2)同じ要素を1つと見た並べ方は何通りあるか答えて下さい。
$$
$$
(1)120(2)240(3)360(4)480
$$
$$
(3)(2)を全体から省いた確率を答えて下さい。
$$
$$
(1)\frac{3}{7}(2)\frac{4}{7}(3)\frac{5}{7}(4)\frac{6}{7}
$$

y

公開日時: 2024年3月16日18:53 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 自動ジャッジ


$$
(1)放物線y=2x^2+4ax+6bにおいて、頂点の座標を示して下さい。
$$
$$
(1)(a,{a}^2+6b)(2)(-2a,-2{a}^2-6b)(3)(-a,-2{a}^2+6b)(4)(-2a,-2{a}^2-6b)
$$
$$
(2)頂点の座標の軸が、-\frac{1}{2}≦x≦1のとき、aの値の範囲を示して下さい。
$$
$$
(1)-1≦a≦1(2)-1≦a≦3(3)-2≦a≦1(4)-1≦a≦3
$$
$$
(3)b=-aのときのaの最大値を示して下さい。
$$
$$
(1)\frac{7}{2}(2)\frac{9}{2}(3)\frac{11}{2}(4)\frac{13}{2}
$$

y

公開日時: 2024年3月16日18:43 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 自動ジャッジ


$$
方程式2^{alog_216}=(\frac{1}{\sqrt{2}})^{log_39}\\の解の8aを示して下さい。
$$
$$
(1)-4(2)-3(3)-2(4)-1
$$

y

公開日時: 2024年3月16日18:15 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 自動ジャッジ


$$
三角形ABCについて、a=3,b=5,C={60}°\\における次の問に答えて下さい。
$$
$$
(1)辺cの長さ
$$
$$
(1)\sqrt{17} (2)\sqrt{18}(3)\sqrt{19}(4)\sqrt{21}
$$
$$
(2)外接円Rの長さ
$$
$$
(1)\frac{1}{2}\sqrt{53}(2)\frac{1}{3}\sqrt{57}(3)\frac{1}{4}\sqrt{61}(4)\frac{1}{5}\sqrt{66}
$$
(3)三角形Sの面積
$$
$$
$$
(1)\frac{13}{2}\sqrt{3}(2)\frac{15}{4}\sqrt{3}(3)\frac{17}{6}\sqrt{3}(4)\frac{19}{8}\sqrt{3}
$$

y

公開日時: 2024年3月16日14:03 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 自動ジャッジ


$$
log_{x}x^{log_{3}27^{log_{5}125}}
$$
$$
を計算してください。
$$
$$
(1)9(2)10(3)11(4)12
$$