$$
-x+(3b+1)i=(a+1)x+\begin{eqnarray}f(i)&=&{2bi}^6\end{eqnarray}\\について答えて下さい。
$$
$$
(ⅰ) f'(i)を答えて下さい。
$$
$$
(1)10b{i}^2(2)11b{i}^2(3)12b{i}^2(4)13b{i}^2
$$
$$
(ⅱ)a,bの値を答えて下さい。
$$
$$
(1)\begin{cases}3\\\frac{1}{2}\end{cases}
(2)\begin{cases}2\\\frac{1}{5}\end{cases}
(3)\begin{cases}3\\\frac{1}{7}\end{cases}
(4)\begin{cases}2\\\frac{1}{9}\end{cases}
$$
$x$ についての方程式 $xe^{2\sqrt{x}}=9(\log{3})^2$ の実数解を求めよ。
解をすべて答えてください。値の小さい順に1行目から入力してください。
なお,解答にあたって,特殊な数式は次のように入力してください。
対数:$\log_n{m}$ = \log_{n}{m}, $\log{m}$ = \log{m}
指数($\sqrt{m} = m^{\frac{1}{2}}$もすべて指数として入力してください):$n^{m}$ = n^{m}
分数:$\frac{a}{b}$ = \frac{a}{b}
複素数の数列$\lbrace z_{n}\rbrace (n=0, 1, 2, ...)$は
$$
z_{n+1}=\left\lvert\frac{z_{n}+\bar{z_{n}}}{2}\right\rvert z_{n} (n=0,1,2,...)
$$
を満たしている。このとき,$\displaystyle \lim_{n\to \infty}z_{n}$が収束するような$z_{0}$の存在範囲を複素数平面上に図示せよ。
この存在範囲を数式で表現してください。最も簡単な1つの等式あるいは不等式を用いてください。
関数列 $\{f_n\}_{n=0,1,\dots}$ が以下を満たします.
また, 実数列$\{A_n\}_{n=1,2,\dots}, \{B_n\}_{n=1,2,\dots}$を以下のように定義します.
$B_{24}$ の値を求めてください.