図のように3つの正方形が配置されています。3つの線分の長さが図のように与えられたとき、緑の六角形の面積を求めてください。
面積は、
$$
\fbox{アイ}+\frac{\fbox{ウエ}\sqrt{\fbox{オカ}}}{\fbox{キ}}
$$
となります。$\fbox ア~\fbox キ$には0以上9以下の整数が入ります。文字列「アイウエオカキ」を解答してください(「」は不要)。ただし、根号の中身や分数は最も簡単な形にしてください。
例$$
面積S=17+\frac{22\sqrt{52}}{8}\rightarrow 17+\frac{11\sqrt{13}}{2}\rightarrow 1711132 と解答
$$
$x,y,z$は全て正の実数とします。次式で定義される$f(x,y,z)$について、次の値を求めてください。$$f(x,y,z)=\frac{1+x^2}{y+z}+\frac{1+y^2}{z+x}+\frac{1+z^2}{x+y}$$
$(1)$ $f(x,y,z)$の最小値
$(2)$ $x+y+z=1$のとき、$f(x,y,z)$の最小値
$(3)$ $x^2+y^2+z^2=1$のとき、$f(x,y,z)$の最小値
$(1)$の答えは$\fbox ア$、$(2)$の答えは$\fbox イ$、$(3)$の答えは$\fbox ウ\sqrt{\fbox エ}$です。
文字列「アイウエ」を解答してください。
どの辺の長さも整数である$\triangle ABC$の面積を$S$とする。$S^2$の小数部分を求めよ。
とりうるすべての小数部分を小さい順に都度改行、列挙してください。
例:
「0,1/2,1/3,1/6,1/√5」の場合、
0
0.5
0.'3'
0.1'6'
1/\sqrt{5}
$xy$平面上において、$A(1,0),B(1,1)$とする。中心が原点の単位円上に動点$P$、線分$AB$上に動点$Q$をとる。また、三角形$PQR$が正三角形となるように点$R$をとる。ただし、点$P,Q,R$はこの順に反時計回りに位置し、点$P,Q$がともに$(1,0)$にあるときは$R(1,0)$とする。このとき、点$R$の動きうる領域を図示し、その面積を求めよ。
面積のみを解答してください。
答えは$\displaystyle\frac{\pi}{a}+\frac{b+\sqrt{c}}{d}$($a,b,c,d$は1桁の自然数)となりますので、センター、共通テスト形式で$a,b,c,d$を埋め、4桁の自然数「abcd」を入力してください。
次の文章の空欄を埋めてください。ただし、以下の文章全てにおいて$x>0$とします。
$(1.1)$
$f(x)=x+4x^{-2}$の最小値を、微分を用いて求めよう。まず、
$$f'(x)=\fbox ア-\frac{\fbox イ}{x^3}$$である。$f'(x)$の符号は$x=\fbox ウ$の前後でのみ変化するから、$f(x)$は$x=\fbox ウ$で極値をとり、さらにそれが最小値であることが分かる。したがって、$f(x)$の最小値は$\fbox エ$である。
この問題は$(1.2)$に示すような解法が知られている。
$(1.2)$
相加相乗平均の関係式を用いて$f(x)$の最小値を求める。$a_1+a_2=1$を満たす$0$以上の実数$a_1,a_2$を用いて、
$$f(x)=a_1x+a_2x+\frac{4}{x^2}\ge3\left(a_1x\cdot a_2x\cdot\frac{4}{x^2}\right)^{\frac 13}=3(4a_1a_2)^{\frac 13}$$とする。いかなる$a_1,a_2$の組に対してもこの不等式は成立する。一方で、等号を成立させる$x$が存在するには、$a_1x=a_2x$でなければならないから、$a_1=a_2$となる。このとき、等号成立条件
$$a_1x=a_2x=\frac{4}{x^2}$$を満たす$x$は存在して、その値は$x=\fbox ウ$で、不等式の右辺の値は$\fbox エ$となり、最小値が得られる。
$(2)$
$g(x)=x+3x^{-1}+x^{-2}$の最小値を、$(1.2)$の解法に準じて求めよう。
$(1.2)$中の議論と同様に、等号成立条件を考えれば、同類項の係数(前問では$a_1,a_2$にあたる)が異なってはならないと言える。したがって、$3$つの自然数$b_1,b_2,b_3$を用いて、$$g(x)=b_1\cdot \frac{x}{b_1}+b_2\cdot\frac{3}{b_2x}+b_3\cdot\frac{1}{b_3x^2}$$と考えることにする(即ち、$b_1$個の$x/b_1$、$b_2$個の$3/b_2x$、$b_3$個の$1/b_3x^2$の和と考える)。相加相乗平均の関係式を適用したときに、累乗根の中身が定数となるには、$b_1=\fbox オb_2+\fbox カb_3$であればよい。等号成立条件は$$\frac{x}{b_1}=\frac{3}{b_2x}=\frac{1}{b_3x^2}$$である。中辺と最右辺の等式から、$x=b_2/(3b_3)$であり、これと最左辺・最右辺の等式から、$$\frac{b_2}{3b_3\left(\fbox オb_2+\fbox カb_3\right)}=\frac{9b_3}{b_2^2}$$整理して、$$b_2^3-\fbox{キク}b_2b_3^2-\fbox{ケコ}b_3^3=0$$この式を解くと、$b_2/b_3=\fbox サ/\fbox シ$を得られるので、$b_1:b_2:b_3=\fbox ス:\fbox セ:\fbox ソ$であれば良いことが分かる。これより、$$g(x)\ge\left(b_1+b_2+b_3\right)\left(\left(\frac{x}{b_1}\right)^{b_1}\left(\frac{3}{b_2x}\right)^{b_2}\left(\frac{1}{b_3x^2}\right)^{b_3}\right)^{\frac{1}{b_1+b_2+b_3}}=\frac{\fbox{タチ}}{\fbox ツ}$$であり、$x=\fbox テ$で等号が成立して、最小値となる。
・$\fbox ア~\fbox テ$には$0$以上$9$以下の整数が入ります。
・式の係数・分母の空欄$\left(\fbox オ・\fbox カ・\fbox シ・\fbox ツ\right)$には$1$が入る可能性もあります。
・$\fbox ス~\fbox ソ$は、$\fbox ス+\fbox セ+\fbox ソ$が最小となるようにしてください。また、分数は既約分数にしてください。
文字列アイウエを$1$行目
文字列オカキクケコを$2$行目
文字列サシスセソを$3$行目
文字列タチツテを$4$行目
に入力して解答してください。
次の文章の空欄を埋めてください。
$n$個の実数$x_1,x_2,\cdots,x_n$が、$x_1+2x_2+3x_3+\cdots+nx_n=n$を満たすとき、$x_1^2+x_2^2+\cdots+x_n^2$の最小値を$m_n$とすると、
$$
m_n=\frac{\fbox アn}{(n+\fbox イ)(\fbox ウn+1)}
$$
であり、
$$
\lim_{n\rightarrow\infty}\left(m_1+\frac{m_2}{2}+\cdots+\frac{m_n}{n}\right)=\fbox{エオ}\left(-\frac{1}{\fbox カ}+\ln{\fbox キ}\right)
$$
である。
$\fbox ア~\fbox キ$には$1$以上$9$以下の整数が入ります。文字列アイウエオカキを半角数字で解答してください。
例: $\fbox ア=1,\fbox イ=2,\fbox ウ=3,\fbox {エオ}=45,\fbox カ=6,\fbox キ=7$ $\rightarrow$ $1234567$ と解答
周の長さが30である長方形ABCDがあります。辺CD上に∠APB=90°となるような点Pをとれるとき、長方形ABCDの面積の最大値を求めてください。
半角数字で解答してください。
しずかちゃんがシャワーを浴びようとしてお湯を出し始めた。はじめのお湯の温度は $35$℃で、お湯を出し始めてから $n$ 秒後のお湯の温度は $T_n$℃であるとする。
しずかちゃんは非常に温度に敏感で、シャワーの温度をちょうど $40$℃に設定しないと落ち着かない。そこで、しずかちゃんはお湯を出し始めてから $n=1,2,3...$ 秒後に、シャワーの温度がちょうど $a(40-T_n)$℃だけ上がるように温度調節レバーを操作する。ここで、$a$ は正の定数である。なお、$T_n>40$ のときは $a(T_n-40)$℃だけ温度が「下がる」ように操作するものとする。
$N$ を自然数の定数として、温度調節レバーの操作がお湯の温度に反映されるまでちょうど $N$ 秒かかる。すなわち、しずかちゃんがお湯を出し始めてから $n$ 秒後に温度調節レバーを操作したとき、 はじめから $n+N$ 秒後と $n+N+1$ 秒後の間にシャワーの温度が $a(40-T_n)$℃だけ上昇する。
さて、$\displaystyle \lim_{n \to \infty} T_n=40$ であれば、しずかちゃんは十分な時間が経つと快適にシャワーを浴びることができる。$a$ が十分小さければ、すなわち温度をできるだけ少しづつ上げていけば、直感的にはこのことは可能である。では、具体的には $a$ はどれほど小さい必要があるのだろうか。そこで、$\displaystyle \lim_{n \to \infty} T_n=40$ が成り立たないような $a$ の最小値を $a_c$ とおく。以下の空欄を埋めよ。
(1) $N=1$ のとき、$a_c=\fbox{ア}$ である。
(2) $N=2$ のとき、$\displaystyle a_c=\frac{\fbox{イウ}+\sqrt{\fbox{エ}}}{\fbox{オ}}$ である。
ア〜オには、0から9までの数字または「-」(マイナス)が入る。
(1)の答えとして「ア」にあてはまる数を半角で1行目に入力せよ。
(2)の答えとして、文字列「イウエオ」を半角で2行目に入力せよ。
正の実数に対して定義され正の実数値をとる関数 $f$ が、任意の正の実数 $x,y$ に対して
$$
f\left(\frac{x+y+1}{xy}\right)=\frac{f(x)f(y)}{x+y+1}
$$
を満たすとき
$$
f\left(\frac{11}{21}\right) = \frac{\fbox{アイウエ}}{\fbox{オカキ}}
$$
である。
ア〜キには、0から9までの数字が入る。
文字列「アイウエオカキ」を半角で1行目に入力せよ。
ただし、それ以上約分できない形で答えよ。