$m!$ を正整数 $m$ の階乗とする。$n \ge 2$ なる整数 $n$ に対し、$m!$ の $n$ 進法表記における末尾の連続する $0$ の個数を $Z_n(m!)$ とする。
正整数 $k$ に対し、$Z_n(m!) = k$ を満たす最小の正整数 $m$ を $M(n, k)$ と定義する(存在しない場合は $M(n, k) = \infty$)。
素数 $p$ について、$M(p, k_1) = p^2$ を満たす正の整数 $k_1$ と、$M(p^2, k_2) = p^3$ を満たす正の整数 $k_2$ を考える。
$k_1 + k_2 = 21$ となる素数 $p$ の値をすべて求めよ。
半角で1スペースおきにお願いします
最初は空けなくていいです
四面体 $\mathrm{ABCD}$ は
$\ \mathrm{AB}=\mathrm{BC}=\mathrm{CA}=6,\ \mathrm{AD}=\mathrm{BD}=4,\ \mathrm{CD}=5$
を満たす.このとき,四面体 $\mathrm{ABCD}$ の体積 $V$ と,外接球の半径 $R$ を求めよ.
解答においては,$1$ 行目に $V^2$ を,$2$ 行目に $R^2$ を記して答えよ.
ただし,整数でない有理数は既約分数(分母は自然数,分子は整数で,互いに素)で表し,$\displaystyle\frac{5}{13}$ なら
5/13
のように記入せよ.
円に外接する凸四角形 $\mathrm{ABCD}$ について,辺 $\mathrm{AB},\mathrm{BC},\mathrm{CD},\mathrm{DA}$ と円との接点をそれぞれ $\mathrm E,\mathrm F,\mathrm G,\mathrm H$ とし,$\mathrm{AE},\mathrm{BF},\mathrm{CG},\mathrm{DH}$ の長さをそれぞれ $a,b,c,d$ とする.このとき,四角形 $\mathrm{ABCD}$ の面積 $S$ を $a,b,c,d$ により表せ.
ただし,解答に際しては $a=3,\ b=4,\ c=5,\ d=7$ の場合の $S^2$ の値を答えよ.
整数でない有理数は既約分数(分母は自然数,分子は整数で,互いに素)で表し,$\displaystyle\frac{5}{13}$ なら
5/13
のように記入して答えよ.
互いに外接する3つの円 $J,K,L$ があり,$K$ と $L$ の接点を $\mathrm A$,$L$ と $K$ の接点を $\mathrm B$,$J$ と $K$ の接点を $\mathrm C$ とする.$\triangle\mathrm{ABC}$ について,頂点 $\mathrm A,\mathrm B,\mathrm C$ の対辺の長さをそれぞれ $a,b,c$ とするとき,円 $J,K,L$ の半径を求めよ.
ただし,解答に際しては $a=17,\ b=13,\ c=14$ の場合の $J$ の半径の値を答えよ.
整数でない有理数は既約分数(分母は自然数,分子は整数で,互いに素)で表し,$\displaystyle\frac{5}{13}$ なら
5/13
のように記入して答えよ.
$p$を$3$より大きい素数とする
$S=\sum_{k=1}^{p-2} k \cdot (k!) \cdot ((p-k-1)!)$
を$p$で割った余りを求めよ。
解答は既約分数で表せるので、
1行目に分子、
2行目に分母
を半角で書いてください
分母は1になる場合も書いてください
$0.017$$<$$tan1°$$<$$0.018$
を示せ。
大学数学なし
自己流ですが、解説を付けているのでぜひ挑戦してみてください
$p$ を $p \ge 5$ なる素数とする。集合 $G_p = {1, 2, \dots, p-1}$ の部分集合 $S$ が自己双対的であるとは、
$$a \in S \implies a^{-1} \pmod p \in S \quad \text{かつ} \quad a \in S \implies p-a \in S$$
が全ての $a \in S$ に対して成り立つことと定義する(ここで $a^{-1}$ は $\pmod p$ における $a$ の乗法逆元)。
$N_p$ を、$G_p$ の自己双対的な部分集合 $S$ の総数とする(空集合 $\emptyset$ も含む)。
$N_p = 32$ となるような素数 $p$ ($p \ge 5$) をすべて求めよ。
解を半角1スペースおきに小さい順に並べてください
n を正の整数とし、$p$ を素数とする。$n!$ の素因数分解における $p$ の指数を $E_p(n!) = \sum_{k=1}^{\infty} \lfloor \frac{n}{p^k} \rfloor$ とする。
量 $Q_n$ を次のように定義する。
$$ Q_n = \sum_{p \le n} \left( \frac{n}{p-1} - E_p(n!) \right) \log p $$
ただし、和は $n$ 以下の全ての素数 $p$ を走り、$\log$ は自然対数とする。
次の極限値を求めよ。
$$ \lim_{n \to \infty} \frac{Q_n}{n} $$
ただし、オイラー・マスケロー二定数を $γ$ とする。
半角で
$a,b,c\ (a\neq0)$ を実数とする.放物線 $y=ax^2+bx+c$ が,$3$ 直線
$\ y=x-2,\ y=-3x+2,\ y=7x-3$
の全てと接するとき,$a,b,c$ の値を求めよ.
答えは,$a,b,c$ の値をそれぞれ $1,2,3$ 行目に記入せよ.ただし,整数でない有理数は既約分数(分母は自然数,分子は整数で,互いに素)で表し,$\displaystyle\frac{-5}{13}$ なら
-5/13
のように記入して答えよ.
【解答例】
1
-2
-1/3
方程式 $x^2+xy+y^3=7$ の表す図形を $y$ 方向に $\fbox{ (1) }$ 平行移動してから $\fbox{ (2) }$ に関して対称移動し,$x$ 方向に $\fbox{ (3) }$ 平行移動し,$\fbox{ (4) }$ に関して対称移動すると,方程式 $x^3-3x^2+xy-y^2+5y=0$ の表す図形となる.
以上の空欄 $(1)\sim(4)$ を適切に補充せよ.ただし,$(1),(3)$ には数値を答え,$(2),(4)$ には以下の語群から言葉を選び答えよ.
【語群】
$\mathrm A.\,x$ 軸
$\mathrm B.\,y$ 軸
$\mathrm C.$ 直線 $y=x$
答えは,空欄 $(1),(2),(3),(4)$ に当てはまる数または記号をそれぞれ $1,2,3,4$ 行目に記して答えよ.
ここで,整数でない有理数は既約分数(分母は自然数,分子は整数で,互いに素)で表し,$\displaystyle\frac{-5}{13}$ なら
-5/13
と記すこと.
【解答例】
3
A
-5/13
B