数学の問題一覧

カテゴリ
以上
以下

微分・積分(17)

y 自動ジャッジ 難易度:
3月前

0

$$
\int_{0}^{m}(\sqrt{\sqrt{x}^{4}}log_{2}{16})dm\\について積分して下さい。
$$
$$
(1)m^{2}(2)2{m}^{2}(3)3{m}^{2}(4)4{m}^{2}
$$

微分・積分(16)

y 自動ジャッジ 難易度:
3月前

0

$$
\int_{0}^{m}\sqrt{\sqrt{x}^{4}}dm\int_{0}^{n}\sqrt{\sqrt{y}^{4}}dn\\について、積分して下さい。
$$
$$
(1)\frac{1}{2}{m}^2{n}^2
(2)\frac{1}{3}{m}^2{n}^2
(3)\frac{1}{4}{m}^2{n}^2
(4)\frac{1}{5}{m}^2{n}^2
$$

微分・積分(15)

y 自動ジャッジ 難易度:
3月前

0

$$
\int_{0}^{m}|\sqrt{\sqrt{x}^{4}}|dm=log_381\\について、小さい方の解を求めて下さい(x>0)。
$$
$$
(1)\sqrt{3}(2)-\sqrt{3}(3)2\sqrt{3}(4)-2\sqrt{3}
$$

絶対値(15)

y 自動ジャッジ 難易度:
3月前

2

$$
|\sqrt{m}^{2}|=log_216\\の解は、どれか(m>0)。
$$
$$
(1)4(2)3(3)2(4)1
$$

指数・対数(7)

y 自動ジャッジ 難易度:
3月前

0

$$
\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{m}^{1024}}}}}}=log_{3}{81}\\について、大さい方の解αについての\\{α}^2+4α+4を求めて下さい。
$$
$$
(1)4(2)8(3)12(4)16
$$

絶対値(14)

y 自動ジャッジ 難易度:
3月前

12

$$
f(n)={i}^{2n-1}\\について、n=100000について、解を求めて下さい。
$$
$$
(1)i(2)-i(3)1(4)-4
$$

絶対値(13)

y 自動ジャッジ 難易度:
3月前

8

$$
f(n)={i}^{n+1}\\についてn=10000のとき、解を選んで下さい。
$$
$$
(1)-{i}(2){i}(3)1(4)-1
$$

絶対値(12)

y 自動ジャッジ 難易度:
3月前

1

$$
||||||||||{i}^{2n+1}||||||||||
$$
$$
この解はどれ?
$$
$$
(1)1(2)-1(3){i}(4){-i}
$$

絶対値(11)

y 自動ジャッジ 難易度:
3月前

0

$$
||||||||\sqrt{i}^{1024}||||||||
$$
$$
答えはどれ?
$$
$$
(1)1(2)-1(3){i}(4)-{i}
$$

恒等式

y 自動ジャッジ 難易度:
3月前

0

$$
恒等式\frac{3ax-b}{(x-1)(2x+1)}=\frac{{cos60゜}+{log_24^a}}{x-1}+\frac{{sin45゜}+{log_327^b}}{2x+1}\\について、a,bについて求めて下さい。
$$
$$
(1)\begin{cases}a=\frac{2}{5}\\b=-\frac{1}{4}\end{cases}
(2)\begin{cases}a=\frac{4}{6}\\b=-\frac{2}{5}\end{cases}
(3)\begin{cases}a=\frac{6}{7}\\b=-\frac{3}{7}\end{cases}
(4)\begin{cases}a=\frac{7}{8}\\b=-\frac{5}{9}\end{cases}
$$

最小値

sdzzz 自動ジャッジ 難易度:
3月前

8

問題文

$0$ 以上 $1$ 以下の実数の組 $(x_0 , x_1 ,\ldots, x_{100})$ と正の実数の組 $(y_0 , y_1 ,\ldots ,y_{100})$ が以下の条件を満たしました.
$$
x_ny_n=n(0\leq n\leq 100),\quad y_0=2,\quad y_{100}=260
$$
この時,以下の値の最小値を求めてください.
$$
\sum_{k=0}^{99} \left(\sqrt{y_k^2+y_{k+1}^2-2y_ky_{k+1}\Bigl( x_kx_{k+1}+\sqrt{(1-x_k^2)(1-x_{k+1}^2)}\Bigr)}\right)
$$

解答形式

求める値は $\sqrt{m}$ と表せるので, $m$ の値を半角数字で解答してください.

微分・積分(14)

y 自動ジャッジ 難易度:
3月前

0

$$
f(x)=-{x}^{2m}-x^{n}-1(l<0,m<0)\\のf'(x)について答えて下さい。
$$
$$
(1)2m-1乗の符号 (a)+ (b)-
$$
$$
(2)n-1乗の符号 (a)+ (b)-
$$