数学の問題一覧

カテゴリ
以上
以下

正三角形と円の求角

tb_lb 自動ジャッジ 難易度:
2年前

8

【補助線主体の図形問題 #041】
 2021年最後の投稿となりました。本問も変わらず発想次第では暗算での処理が可能です。自信のある方は紙・ペンを利用せず、脳内処理だけで解いてみてください!

★予告★

${}$ 週に1回、補助線主体の初等幾何のお送りしてきましたが、年明けは西暦である2022を織り込んだパズルや整数問題などをお送りします。曜日と関係なく、1月1日もしくは2日から6~7日連続して投稿する予定です。ぜひご期待ください。

解答形式

${\renewcommand\deg{{}^{\circ}}}$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。角度は弧度法ではなく度数法で表すものとします。
(例) $12\deg$ → $\color{blue}{12.00}$  $\frac{360}{7}^{\circ}$ → $\color{blue}{51.43}$
 入力を一意に定めるための処置です。
 近似値を求める際には、関数電卓やグーグルの電卓機能、Wolfram|Alpha https://www.wolframalpha.com などのご利用をお勧めします。

求角問題17

Kinmokusei 自動ジャッジ 難易度:
2年前

9

問題文

図の条件の下で、青で示した角の大きさを求めてください。

解答形式

解答を弧度法で表すと、$x=\dfrac{a}{b}\pi$ です。$a+b$を解答してください。
ただし、$a,b$ は互いに素な正整数で、$0\leq \dfrac{a}{b} \lt 1$ を満たします。

平面図形①

pontikisamurai 自動ジャッジ 難易度:
2年前

2

問題文

四角形ABCD、四角形GHCFはそれぞれ正方形で、1辺の長さはそれぞれ10cm、4cmです。また、DCとFC、BCとHCはぴったり重なっているとする。また、四角形IBKJは長方形で、IJは2cm、IBは4cmとし、ABとIB、BCとBKはぴったり重なっているとする。更に、AJとDGの延長とBCとの交点をEとし、Gを通りΔADEの面積を2等分する線とADとの交点をP、Jを通りΔADEの面積2等分する線と、ADとの交点をRとする。さらにPGの延長とBCとの交点をQ、RJとABとの交点をSとする。PGとRJの交点をOとする。四角形OJEQの面積を求めよ。

解答方法

分数は/で表してください。
例)2分の9は 9/2 で表す。

求角問題16

Kinmokusei 自動ジャッジ 難易度:
2年前

8

問題文

正六角形内に、図のように円を配置しました。青で示した角の大きさを求めてください。

解答形式

$\angle x=a°$ です。$a$ に当てはまる0以上180未満の数値を半角で回答してください。


【補助線主体の図形問題 #040】
 2021年も残り半月を切りました。慌ただしい頃合いかもしれませんが、ちょいと一息図形問題などいかがでしょうか。
 適当に補助線を引いても気づいたら解けてしまうような問題かもしれません。腕に覚えのある方はぜひ完全に脳内で処理し切ってみてください。

解答形式

${\def\cm{\thinspace \mathrm{cm}}}$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。
(例) $12\cm$ → $\color{blue}{12.00}$  $10\sqrt{2}\cm$ → $\color{blue}{14.14}$  $\dfrac{1+\sqrt{5}}{2} \cm$ → $\color{blue}{1.62}$
 入力を一意に定めるための処置です。
 たとえば答えに無理数を含む場合、$\sqrt{2}=1.41$や$\pi=3.14$などでは必要な桁が足りない場合があるのでご注意ください。
 近似値を求める際には、関数電卓やグーグルの電卓機能、Wolfram|Alpha https://www.wolframalpha.com などのご利用をお勧めします。

2年前

10

【補助線主体の図形問題 #039】
 今日は12月12日ということでそこかしこに12が現れる問題を用意してみました。補助線が活躍するのはいつも通りですし、暗算処理が可能な解法も仕込んであります。
 年末に向かう忙しい時期かもしれませんが、ひと時の図形タイムをお過ごしください!

解答形式

${\def\cm{\thinspace \mathrm{cm}}}$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。
(例) $12\cm^2$ → $\color{blue}{12.00}$  $10\sqrt{2}\cm^2$ → $\color{blue}{14.14}$  $\dfrac{1+\sqrt{5}}{2} \cm^2$ → $\color{blue}{1.62}$
 入力を一意に定めるための処置です。
 たとえば答えに無理数を含む場合、$\sqrt{2}=1.41$や$\pi=3.14$などでは必要な桁が足りない場合があるのでご注意ください。
 近似値を求める際には、関数電卓やグーグルの電卓機能、Wolfram|Alpha https://www.wolframalpha.com などのご利用をお勧めします。

求面積問題30

Kinmokusei 自動ジャッジ 難易度:
2年前

10

問題文

正三角形・長方形・半円を組み合わせた以下の図形について、図中緑の線分の長さが6のとき、図形全体の面積を求めてください。

解答形式

半角数字で解答してください。

求角問題15

Kinmokusei 自動ジャッジ 難易度:
2年前

7

問題文

図の条件の下で、青で示した角の大きさを求めてください。

解答形式

解答を度数法で表し、0以上180未満の数値を半角数字で解答してください。
単位("度・°"など)はつけないでください。


【補助線主体の図形問題 #038】
 久しぶりに面積関係がらみの問題を用意してみました。処理次第ではギリギリ暗算でも解き切ることが可能ですが、最初の山を越えたら紙&ペンを利用してしまうのが早いと思います。いつも通り補助線の威力を存分にお楽しみいただけたら幸いです。

解答形式

${\def\cm{\thinspace \mathrm{cm}}}$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。
(例) $12\cm^2$ → $\color{blue}{12.00}$  $10\sqrt{2}\cm^2$ → $\color{blue}{14.14}$  $\dfrac{1+\sqrt{5}}{2} \cm^2$ → $\color{blue}{1.62}$
 入力を一意に定めるための処置です。
 たとえば答えに無理数を含む場合、$\sqrt{2}=1.41$や$\pi=3.14$などでは必要な桁が足りない場合があるのでご注意ください。
 近似値を求める際には、関数電卓やグーグルの電卓機能、Wolfram|Alpha https://www.wolframalpha.com などのご利用をお勧めします。


【補助線主体の図形問題 #037】
 ここ数回、正多角形がらみの出題が続いたので、今回は円を登場させてみました。補助線しだいで暗算で処理可能なのはいつもと変わりません。あれやこれやと試行錯誤をお楽しみください。

解答形式

${\def\cm{\thinspace \mathrm{cm}}}$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。
(例) $12\cm$ → $\color{blue}{12.00}$  $10\sqrt{2}\cm$ → $\color{blue}{14.14}$  $\dfrac{1+\sqrt{5}}{2} \cm$ → $\color{blue}{1.62}$
 入力を一意に定めるための処置です。
 たとえば答えに無理数を含む場合、$\sqrt{2}=1.41$や$\pi=3.14$などでは必要な桁が足りない場合があるのでご注意ください。
 近似値を求める際には、関数電卓やグーグルの電卓機能、Wolfram|Alpha https://www.wolframalpha.com などのご利用をお勧めします。

求長問題30

Kinmokusei 自動ジャッジ 難易度:
3年前

15

問題文

図の条件の下で $x$ の長さを求めてください。
解答形式に注意してください。

解答形式

$x^2$ の値を半角数字で解答してください。

3年前

7

【補助線主体の図形問題 #036】
 前問に引き続き正十一角形の求角問題です。補助線が活躍するのも、処理次第では暗算可能なのもいつもと変わりません。補助線の威力を存分にお楽しみください。

解答形式

${\renewcommand\deg{{}^{\circ}}}$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。角度は弧度法ではなく度数法で表すものとします。
(例) $12\deg$ → $\color{blue}{12.00}$  $\frac{360}{7}^{\circ}$ → $\color{blue}{51.43}$
 入力を一意に定めるための処置です。
 近似値を求める際には、関数電卓やグーグルの電卓機能、Wolfram|Alpha https://www.wolframalpha.com などのご利用をお勧めします。