5個の二等辺三角形と10個の菱形

tb_lb 自動ジャッジ 難易度: 数学 > 中学数学
2022年3月20日23:23 正解数: 9 / 解答数: 20 (正答率: 45%) ギブアップ不可
初等幾何 面積

【補助線主体の図形問題 #050】
 今週の図形問題はおなじみの図形を積み上げる趣向でお送りします。図形の数の多さにひるむかもしれませんが、補助線をうまく引ければ暗算でも処理できるように仕込んであります。どうぞ補助線の威力を存分にお楽しみください!

解答形式

${\def\cm{\thinspace \mathrm{cm}}}$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。
(例) $12\cm^2$ → $\color{blue}{12.00}$  $10\sqrt{2}\cm^2$ → $\color{blue}{14.14}$  $\dfrac{1+\sqrt{5}}{2} \cm^2$ → $\color{blue}{1.62}$
 入力を一意に定めるための処置です。
 たとえば答えに無理数を含む場合、$\sqrt{2}=1.41$や$\pi=3.14$などでは必要な桁が足りない場合があるのでご注意ください。
 近似値を求める際には、関数電卓やグーグルの電卓機能、Wolfram|Alpha https://www.wolframalpha.com などのご利用をお勧めします。


スポンサーリンク

解答提出

この問題は自動ジャッジの問題です。 解答形式が指定されていればそれにしたがって解答してください。

Discordでログイン Sign in with Google パスワードでログイン

ログインすると? ログインすると、解答・ギブアップをする他に、問題を投稿したり、ランキングで競うことができます。

または


おすすめ問題

この問題を解いた人はこんな問題も解いています


${}$ 西暦2022年問題第6弾です。第5弾から変化したのは1ヶ所のみ、「20桁の自然数」を「21桁の自然数」に変えただけです。この1ヶ所の変化が何をもたらすのか、ぜひご自身の手でご確認ください。

解答形式

${}$ 解答は条件を満たす自然数の個数をそのまま入力してください。単位は不要です。
(例) $106$ 個 → $\color{blue}{106}$
 なお、解法によってはやや面倒な計算が待っています。必要に応じてWolfram|Alphaや関数電卓などを遠慮なくご利用ください。


${}$ 年始集中企画として西暦2022年問題をお送りしてきました。今回が第7弾、最終回です。後半はとかく大きめの数を扱うことが多く、ご多分に漏れず当問もそうなっています。どうぞ最後までお楽しみください。

お知らせ

${}$ いつもの図形問題ですが、明日1月9日(日)は出題をお休みして、翌週1月16日(日)から再開する予定です。お待たせしていますが、またどうぞよろしくお願いします。

解答形式

${}$ 解答は条件を満たす自然数の個数をそのまま入力してください。単位は不要です。
(例) $107$ 個 → $\color{blue}{107}$


${}$ 西暦2022年問題第5弾です。当シリーズも後半ということで、極端に数を大きくしてみました。とはいえ、もちろん手計算で処理しきれるように仕込みは上々です。どうぞ0と2だらけの数たちをお楽しみください。

解答形式

${}$ 解答は条件を満たす自然数の個数をそのまま入力してください。単位は不要です。
(例) $105$ 個 → $\color{blue}{105}$
 なお、解法によってはやや面倒な計算が待っています。必要に応じてWolfram|Alphaや関数電卓などを遠慮なくご利用ください。

4つの半円弧

tb_lb 自動ジャッジ 難易度:
2年前

3

【補助線主体の図形問題 #049】
 出題日の翌日である3月14日はその数の並びから「円周率の日」と定められています。ちょっと気が早いですが、円周率の日になぞらえて円周だけで構成された問題を用意してみました。タネがわかれば大した計算量ではないのですが、ちょっとした計算用紙があった方が安心して解けるかと思います。

解答形式

${\def\cm{\thinspace \mathrm{cm}}}$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。
(例) $12\cm$ → $\color{blue}{12.00}$  $10\sqrt{2}\cm$ → $\color{blue}{14.14}$  $\dfrac{1+\sqrt{5}}{2} \cm$ → $\color{blue}{1.62}$
 入力を一意に定めるための処置です。
 たとえば答えに無理数を含む場合、$\sqrt{2}=1.41$や$\pi=3.14$などでは必要な桁が足りない場合があるのでご注意ください。
 近似値を求める際には、関数電卓やグーグルの電卓機能、Wolfram|Alpha https://www.wolframalpha.com などのご利用をお勧めします。

三角形と4つの傍接円

tb_lb 自動ジャッジ 難易度:
14月前

7

【補助線主体の図形問題 #093】
 今週の図形問題は傍接円がテーマで、傍接円を4つも登場させてしまいました。補助線を頼りに傍接円だらけの図形をねじ伏せてください。

解答形式

${\def\cm{\thinspace \mathrm{cm}}}$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。
(例) $12\cm$ → $\color{blue}{12.00}$  $10\sqrt{2}\cm$ → $\color{blue}{14.14}$  $\dfrac{1+\sqrt{5}}{2} \cm$ → $\color{blue}{1.62}$
 入力を一意に定めるための処置です。
 たとえば答えに無理数を含む場合、$\sqrt{2}=1.41$や$\pi=3.14$などでは必要な桁が足りない場合があるのでご注意ください。
 近似値を求める際には、関数電卓やグーグルの電卓機能、Wolfram|Alpha https://www.wolframalpha.com などのご利用をお勧めします。

求面積問題26

Kinmokusei 自動ジャッジ 難易度:
2年前

6

問題文

2つの正方形が図のように配置されています。赤と青の面積の差が$11$のとき、紫と橙の面積の差を求めてください。

解答形式

半角数字で解答してください。

2年前

9

【補助線主体の図形問題 #022】
 まもなく迎える7月22日は、$\dfrac{22}{7} = 3.\overline{142857} \fallingdotseq \pi$ から「円周率近似値の日」とされています。今回は円周率近似値の日を少し先取りして円だけで構成された問題を用意しました。暗算解法もいつも通り用意しています。補助線と共にしばし図形問題をお楽しみください。

解答形式

${
\def\cm{\thinspace \mathrm{cm}}
\renewcommand\deg{{}^{\circ}}
\def\myang#1{\angle \mathrm{#1}}
\def\mytri#1{\triangle \mathrm{#1}}
}$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。
(例) $12\cm$ → $\color{blue}{12.00}$  $10\sqrt{2}\cm$ → $\color{blue}{14.14}$  $\dfrac{1+\sqrt{5}}{2} \cm$ → $\color{blue}{1.62}$
 入力を一意に定めるための処置です。
 たとえば答えに無理数を含む場合、$\sqrt{2}=1.41$や$\pi=3.14$などでは必要な桁が足りない場合があるのでご注意ください。
 近似値を求める際には、関数電卓やグーグルの電卓機能、Wolfram|Alpha https://www.wolframalpha.com などのご利用をお勧めします。

ヒント内容の予告

  1. 全体の方針
  2. 補助線の方針
  3. 補助線を活かす視点をぼんやりと
  4. ヒント3の続き

正三角形の頂点の軌跡

zyogamaya 自動ジャッジ 難易度:
3年前

3

問題文

$xy$平面上において、$A(1,0),B(1,1)$とする。中心が原点の単位円上に動点$P$、線分$AB$上に動点$Q$をとる。また、三角形$PQR$が正三角形となるように点$R$をとる。ただし、点$P,Q,R$はこの順に反時計回りに位置し、点$P,Q$がともに$(1,0)$にあるときは$R(1,0)$とする。このとき、点$R$の動きうる領域を図示し、その面積を求めよ。

解答形式

面積のみを解答してください。
答えは$\displaystyle\frac{\pi}{a}+\frac{b+\sqrt{c}}{d}$($a,b,c,d$は1桁の自然数)となりますので、センター、共通テスト形式で$a,b,c,d$を埋め、4桁の自然数「abcd」を入力してください。

2年前

9

問題文

2つの正三角形が図のように配置されています。青で示した3つの線分の長さの和($x+y+z$ の値)を求めてください。

解答形式

$(x+y+z)^2$ は正整数になるので、この値を半角数字で解答してください。

3年前

10

【補助線主体の図形問題 #010】
 今年2021年の1月末から投稿を初めて10問目となりました。キリ番記念(?)に少しばかり手ごたえのある問題をお送りすることにします。うまい補助線を引けるだけでは不十分で、補助線を活かすための発想も必要です。じっくり腰を据えて補助線を戯れてみてください!

解答形式

${
\def\cm{\thinspace \mathrm{cm}}
\renewcommand\deg{{}^{\circ}}
\def\jpara{\mathrel{\unicode{x2AFD}}}
}$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。
(例) $12\cm$ → $\color{blue}{12.00}$  $10\sqrt{2}\cm$ → $\color{blue}{14.14}$  $\dfrac{1+\sqrt{5}}{2} \cm$ → $\color{blue}{1.62}$
 入力を一意に定めるための処置です。
 たとえば答えに無理数を含む場合、$\sqrt{2}=1.41$や$\pi=3.14$などでは必要な桁が足りない場合があるのでご注意ください。
 近似値を求める際には、関数電卓やグーグルの電卓機能、Wolfram|Alpha https://www.wolframalpha.com などのご利用をお勧めします。

ヒント内容の予告

  1. まずすべきことと全体の方針
  2. ヒント1の続き
  3. ヒント2をやや具体的に
  4. ヒント2・3の続き
2年前

7

【補助線主体の図形問題 #020】
 今週の図形問題は円がらみの求長問題を用意しました。いつも通り暗算解法も仕込んであります。初等幾何猛者の方はぜひ脳内で処理しきってみてください。猛者とまではいかないという方もじっくりと挑戦してもらえたら嬉しいです!

解答形式

${
\def\cm{\thinspace \mathrm{cm}}
\def\myang#1{\angle \mathrm{#1}}
\renewcommand\deg{{}^{\circ}}
}$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。
(例) $12\cm$ → $\color{blue}{12.00}$  $10\sqrt{2}\cm$ → $\color{blue}{14.14}$  $\dfrac{1+\sqrt{5}}{2} \cm$ → $\color{blue}{1.62}$
 入力を一意に定めるための処置です。
 たとえば答えに無理数を含む場合、$\sqrt{2}=1.41$や$\pi=3.14$などでは必要な桁が足りない場合があるのでご注意ください。
 近似値を求める際には、関数電卓やグーグルの電卓機能、Wolfram|Alpha https://www.wolframalpha.com などのご利用をお勧めします。

ヒント内容の予告

  1. 全体方針をぼんやりと
  2. ヒント1の続き
  3. ヒント2をやや具体的に
  4. ヒント3の続き

正三角形と4つの円

tb_lb 自動ジャッジ 難易度:
2年前

9

【補助線主体の図形問題 #024】
 今週も補助線主体の図形問題をお送りします。一瞬ギョッとするかもしれませんが、何かが連想できればいつも通り暗算で処理可能です。強引な処理方法もあります。あれこれ試行錯誤を楽しんでもらえれば幸いです。

解答形式

${
\def\cm{\thinspace \mathrm{cm}}
\def\mytri#1{\triangle \mathrm{#1}}
}$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。
(例) $12\cm$ → $\color{blue}{12.00}$  $10\sqrt{2}\cm$ → $\color{blue}{14.14}$  $\dfrac{1+\sqrt{5}}{2} \cm$ → $\color{blue}{1.62}$
 入力を一意に定めるための処置です。
 たとえば答えに無理数を含む場合、$\sqrt{2}=1.41$や$\pi=3.14$などでは必要な桁が足りない場合があるのでご注意ください。
 近似値を求める際には、関数電卓やグーグルの電卓機能、Wolfram|Alpha https://www.wolframalpha.com などのご利用をお勧めします。

ヒント内容の予告

  1. 定理の紹介
  2. ヒント1の使い方をぼんやりと
  3. 全体の方針をぼんやりと