公開日時: 2023年10月27日22:00 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 自動ジャッジ
三角形 $ABC$ について,内心を $I$ とし,$AD=AB=EB$ なる点 $D, E$ をそれぞれ辺 $AC, BC$ 上にとります. いま,円 $CDE$ と $ID, IE$ の交点をそれぞれ $P(\neq D), Q(\neq E)$ とすると,$AP$ は円 $CDE$ に接しました. $AI$ と円 $ABC$ の交点を $M(\neq A)$ とすると,$AI×IM=233, IP=19$ が成立しました. $MQ$ の長さは互いに素な正整数 $a, b$ を用いて $\dfrac{a}{b}$ と表せるので,$a+b$ を求めてください.
$a+b$ を求めてください.
公開日時: 2023年10月27日22:00 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 採点者ジャッジ
次の条件を満たす正整数 $a,b$ の組を $1$ つ求め,$a,b$ をこの順につなげて解答してください.
・$a>150$
・$a-b=2^7$
・$a$ に登場する数字の集合を $X$,$b$ に登場する数字の集合を $Y$ ,$ab$ に登場する数字の集合を $Z$とすると(例: $a=1233445$ のとき $X={1,2,3,4,5}$),$|X|=3,Y\subset X,|Z|=3,X=Z$ が成立する.
条件を満たす正整数 $a,b$ の組を $1$ つ解答してください.
公開日時: 2023年10月27日22:00 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 自動ジャッジ
素数 $p$ に対して,$\dfrac{1}{p}$ を小数表記したときに循環する長さを $\Pi(p)$ で表します.正整数 $n$ に対し,$\Pi(p)=n$ なる $p$ のうち最小のものを $M(n)$ とするとき,以下の値を求めてください.ただし,有限小数の場合循環はしないとします.
$$M(1)+M(2)+M(3)+M(4)+M(5)+M(6)$$
答えとなる数字のみを解答してください.
公開日時: 2023年10月27日21:05 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 採点者ジャッジ
$\lfloor\pi\rfloor$ を求めてください.
半角数字で解答してください.
公開日時: 2023年10月26日15:53 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 自動ジャッジ
数列$a_n$を次のように定める。
$a_1=1$
$a_n=n^{a_{n-1}}$
このとき、以下の問いに答えなさい。
(1)$a_{2023}$の一の位はいくつか求めよ。
(2)$a_{2024}$の一の位はいくつか求めよ。
(3)$a_{2024}$の百の位はいくつか求めよ。
(1) ~~~
(2) ~~~
の形でお願いします。問題番号と解答、一つの小問の解答と解答の間は半角スペースを開けてください。
解答は数字のみお書きください。
公開日時: 2023年10月26日12:51 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 自動ジャッジ
(1)$2024!$は何回$2$で割り切ることができるか答えよ。
(2)$[\sqrt{2024}]$、$[\sqrt[3]{2024}]$の値を求めよ。ただし、$[x]$は$x$を超えない最大の整数を表すものとする。
(3)$2024!$の約数の個数は$10^{91}$より大きいことを示せ。ただし、$1$から$2024$までの素数は$306$個である。
(1) ~~~
(2) ~~~
の形でお願いします。問題番号と解答、一つの小問の解答と解答の間は半角スペースを開けてください。
解答は数字のみお書きください。
公開日時: 2023年10月22日22:43 / ジャンル: 数学 / カテゴリ: 中学数学 / 難易度: / ジャッジ形式: 自動ジャッジ
【補助線主体の図形問題 #120】
今週の図形問題です。普段は補助線次第で暗算で処理できる問題を隙あらば入れているのですが、今回は計算量が多めです。補助線と工夫を武器に計算量を減らす道を探ってみてください。計算力に自信のある方は、どうぞその計算力でなぎ倒してもいいですよ!
${
\def\cm{\thinspace \mathrm{cm}}
}$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。
(例) $12\cm$ → $\color{blue}{12.00}$ $10\sqrt{2}\cm$ → $\color{blue}{14.14}$ $\dfrac{1+\sqrt{5}}{2} \cm$ → $\color{blue}{1.62}$
入力を一意に定めるための処置です。
たとえば答えに無理数を含む場合、$\sqrt{2}=1.41$や$\pi=3.14$などでは必要な桁が足りない場合があるのでご注意ください。
近似値を求める際には、関数電卓やグーグルの電卓機能、Wolfram|Alpha https://www.wolframalpha.com などのご利用をお勧めします。
公開日時: 2023年10月15日21:36 / ジャンル: 数学 / カテゴリ: 中学数学 / 難易度: / ジャッジ形式: 自動ジャッジ
【補助線主体の図形問題 #119】
今週の図形問題です。今回も補助線が活躍するのはいつも通りで、補助線次第で手慣れた方なら暗算で済んでしまいそうな計算量となっています。……なんて書いていますが、解き方は自由! ぜひお好きな解法でお楽しみください!!
${
\def\cm{\thinspace \mathrm{cm}}
}$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。
(例) $12\cm$ → $\color{blue}{12.00}$ $10\sqrt{2}\cm$ → $\color{blue}{14.14}$ $\dfrac{1+\sqrt{5}}{2} \cm$ → $\color{blue}{1.62}$
入力を一意に定めるための処置です。
たとえば答えに無理数を含む場合、$\sqrt{2}=1.41$や$\pi=3.14$などでは必要な桁が足りない場合があるのでご注意ください。
近似値を求める際には、関数電卓やグーグルの電卓機能、Wolfram|Alpha https://www.wolframalpha.com などのご利用をお勧めします。