数学の問題一覧

カテゴリ
以上
以下

EasyNumber.1 サイコロ勝負

PCTSMATH 採点者ジャッジ 難易度:
3年前

2

問題文

AさんBさんの二人の人がいる
この時サイコロをAさんが投げる
1.2.3が出たら次回は次の人がサイコロを投げる
4.5が出たら次回も同じ人が投げる
6が出たら勝利である
N回目でAが勝利する確率を求めよ

解答形式

Nについての式を求めよ

ハート型の詰め込み

tb_lb 自動ジャッジ 難易度:
19月前

2

【補助線主体の図形問題 #046】
 バレンタイン直前なのを意識してこんな図形問題を用意してみました。イベント便乗の色物問題ですが、方針次第では暗算で処理できるのはいつも通りです。補助線と共に存分にお楽しみください。

解答形式

${\def\cm{\thinspace \mathrm{cm}}}$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。
(例) $12\cm$ → $\color{blue}{12.00}$  $10\sqrt{2}\cm$ → $\color{blue}{14.14}$  $\dfrac{1+\sqrt{5}}{2} \cm$ → $\color{blue}{1.62}$
 入力を一意に定めるための処置です。
 たとえば答えに無理数を含む場合、$\sqrt{2}=1.41$や$\pi=3.14$などでは必要な桁が足りない場合があるのでご注意ください。
 近似値を求める際には、関数電卓やグーグルの電卓機能、Wolfram|Alpha https://www.wolframalpha.com などのご利用をお勧めします。

15月前

2

【補助線主体の図形問題 #059】
 今週の図形問題はいつもと趣向が少し異なり連問です。入試問題における大問を(1)(2)と2週に分けて出題するイメージです。
 (1)である当問ですが、いつも通り暗算解法を仕込んでいます。計算量は少ないのですが、補助線を含む筋道がそこそこ長いです。じっくりと腰を据えてお楽しみください。

解答形式

${\def\cm{\thinspace \mathrm{cm}}}$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。
(例) $12\cm$ → $\color{blue}{12.00}$  $10\sqrt{2}\cm$ → $\color{blue}{14.14}$  $\dfrac{1+\sqrt{5}}{2} \cm$ → $\color{blue}{1.62}$
 入力を一意に定めるための処置です。
 たとえば答えに無理数を含む場合、$\sqrt{2}=1.41$や$\pi=3.14$などでは必要な桁が足りない場合があるのでご注意ください。
 近似値を求める際には、関数電卓やグーグルの電卓機能、Wolfram|Alpha https://www.wolframalpha.com などのご利用をお勧めします。

15月前

2

【補助線主体の図形問題 #060】
 今週の図形問題は先週( https://pororocca.com/problem/1126/ )の続きにあたります。設定はまったく同じで、求める長さのみが異なるだけです。前問である(1)を解いたうえで挑戦することをお勧めします。内心たちが作る性質をたっぷり堪能してもらえたら本望です。

解答形式

${\def\cm{\thinspace \mathrm{cm}}}$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。
(例) $12\cm$ → $\color{blue}{12.00}$  $10\sqrt{2}\cm$ → $\color{blue}{14.14}$  $\dfrac{1+\sqrt{5}}{2} \cm$ → $\color{blue}{1.62}$
 入力を一意に定めるための処置です。
 たとえば答えに無理数を含む場合、$\sqrt{2}=1.41$や$\pi=3.14$などでは必要な桁が足りない場合があるのでご注意ください。
 近似値を求める際には、関数電卓やグーグルの電卓機能、Wolfram|Alpha https://www.wolframalpha.com などのご利用をお勧めします。

15月前

2

問題文

$\angle C=90°$ である $\triangle ABC$ において, $C$ から $AB$ へおろした垂線の足を $P$ , $\angle C$ の二等分線と $AB$ との交点を $Q$ とします. $AQ=3,BQ=4$ のとき, $PQ$ の長さを求めてください.
(下図には $CP⊥AB$ であることが書かれていませんので, 注意してください. )

解答形式

互いに素な正整数 $a,b$ によって $PQ=\dfrac{a}{b}$ と表せるので, $a+b$ の値を半角数字で解答してください.

素数の魔方陣

miq 自動ジャッジ 難易度:
8月前

2

問題文


4×4の格子に,次の規則に従って,1マスに1つずつ,素数を入れる.

規則

・どの縦・横・斜めに並ぶ4つの数の和も,すべて等しくなるようにする.
・同じ数は2回以上使わない.

いま,図のように,一部のマスに数が記入されており,残りのマスに適切な数を入れることで,上の規則を満たすようにすべてのマスを埋めることができる.このとき,?のマスに当てはまる数を求めよ.

解答形式

半角数字で解答してください.

京大オマージュ

Gauss 採点者ジャッジ 難易度:
2年前

2

問題文

$\sin1°$ は有理数か。

解答形式

証明を簡潔に記述してください。

求長問題25

Kinmokusei 自動ジャッジ 難易度:
2年前

2

問題文

半円が内接する長方形に、図のように線を引きました。赤と青で示した線分の長さがそれぞれ3,4で、ピンクで示した線分の長さが等しいとき、緑の線分の長さを求めてください。

解答形式

$x=\sqrt{\fbox{アイ}}$です。文字列 アイ を解答してください。

14月前

2

問題文

図の条件の下で、$x$ で示した角の大きさを求めてください。
ただし、外側の三角形は鋭角三角形であるとします。

解答形式

$x=a$ 度です $(0<a<30)$ 。$a$ の値を半角数字で解答してください。

4つの半円弧

tb_lb 自動ジャッジ 難易度:
18月前

2

【補助線主体の図形問題 #049】
 出題日の翌日である3月14日はその数の並びから「円周率の日」と定められています。ちょっと気が早いですが、円周率の日になぞらえて円周だけで構成された問題を用意してみました。タネがわかれば大した計算量ではないのですが、ちょっとした計算用紙があった方が安心して解けるかと思います。

解答形式

${\def\cm{\thinspace \mathrm{cm}}}$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。
(例) $12\cm$ → $\color{blue}{12.00}$  $10\sqrt{2}\cm$ → $\color{blue}{14.14}$  $\dfrac{1+\sqrt{5}}{2} \cm$ → $\color{blue}{1.62}$
 入力を一意に定めるための処置です。
 たとえば答えに無理数を含む場合、$\sqrt{2}=1.41$や$\pi=3.14$などでは必要な桁が足りない場合があるのでご注意ください。
 近似値を求める際には、関数電卓やグーグルの電卓機能、Wolfram|Alpha https://www.wolframalpha.com などのご利用をお勧めします。

14月前

2

問題文

図の条件の下で、線分 $CG$ の長さを求めてください。
※図中の各線分の長さの比は正確とは限りません。

解答形式

互いに素な正整数 $a,b$ によって $CG=\dfrac{a}{b}$ と表せるので、$a+b$ の値を半角数字で解答してください。

[C] A Downward Tower

halphy 自動ジャッジ 難易度:
3年前

2

問題文

$n=0,1,\cdots$ に対し,$I_n$を
$$
I_n=\sum_{k=0}^{\infty}\frac{1}{2^{k}k!(2n+2k-1)!!}
$$で定める。ただし $(-1)!!=1$ とする。この級数は収束することが知られている(例えば,ダランベールの判定法を適用すればよい)。特に
$$
I_0+I_1=\fbox{ア}
$$である。また,$\{I_n\}$ は漸化式
$$
I_{n-1}-I_{n+1}=(\,\fbox{イ}\,n-\fbox{ウ}\,)I_n\quad(n=1,2,\cdots)
$$を満たし
$$
\lim_{n\to\infty}\frac{I_{n+1}}{I_n}=\fbox{エ}
$$が成り立つ。これらの結果を用い,漸化式を変形すると
$$
1+\cfrac{1}{3+\cfrac{1}{5+\cfrac{1}{7+\cfrac{1}{\ddots}}}}=\frac{\fbox{オ}^{\fbox{カ}}+\fbox{キ}}{\fbox{ク}^{\fbox{ケ}}-\fbox{コ}}
$$が得られる。ただし $\fbox{オ}\neq\fbox{キ}$ とする。

注意

自然数 $n\geq 1$ に対し,$n!!$ は $1$ 個とばしの階乗を表す。例えば,$n$ が奇数のとき
$$
n!!=n(n-2)(n-4)\cdots 3\cdot 1
$$である。

解答形式

空欄 $\fbox{ア}$ 〜 $\fbox{コ}$ には,半角数字 0 - 9 ,記号 - ,円周率 π ,自然対数の底 e のいずれかが当てはまります。$\fbox{ア}$ 〜 $\fbox{コ}$ に当てはまるものを改行区切りで入力してください。