mim

mim

Twitter ID: @Mimutut

統計情報

フォロー数0
フォロワー数0
投稿した問題数2
コンテスト開催数0
コンテスト参加数0
解答された数2
いいねされた数0
解答した問題数3
正解した問題数2
正解率66.7%

人気問題

軌跡の長さ

mim 自動ジャッジ 難易度:
1日前

2

問題文

xy平面上に固定された円板C:x^2+y^2=1と、
CにA(1,0)で固定された長さ2π、もう一方の端点をPとする糸がある。
始めにP=Aとなるように糸を時計回りでCに巻き付ける。
ここで、Cと合同な円板C'をAで外接させ、
C’上の接点とPを接着する。
C'がCに接しながら糸を弛ませずに反時計回りに
Cを一周する。
(但し、始めからしばらくはC'に糸は巻きつかない)
Pの軌跡の長さを求めよ。

解答形式

Xπ+Y(X,Yは有理数)の形になるので
X+Yを最もシンプルな形で答えよ。
(但し、X,Yは正の数とは限らない)
不正解となった場合、Xπ+Yもしくは簡単な方針を質問欄に入れてくれると助かります

難しい求積

mim 自動ジャッジ 難易度:
1日前

0

問題

ある三角形OABにおいて
OP=sOA、OQ=tOBとなるように
P,Qを半直線OA,OB上におく(0<s,t<1)
そして、点Rを次のように定める
・Rは四角形ABQPの内部に存在し、
  |O-AB|:|O-PQ|=|R-AB|:|R-PQ|を満たす
(但し、|X-YZ|は点Xから直線YZへの距離とする)
このとき、s,tがs+t=1を満たしながら変動する。
Rの存在領域の面積を求めよ!!

解答形式

〈(10D+E)√F−Gπ〉|△OAB|÷9√3と表せるので(D,E,F,Gは数字)、四桁の数DEFGを答えよ

新着問題

軌跡の長さ

mim 自動ジャッジ 難易度:
1日前

2

問題文

xy平面上に固定された円板C:x^2+y^2=1と、
CにA(1,0)で固定された長さ2π、もう一方の端点をPとする糸がある。
始めにP=Aとなるように糸を時計回りでCに巻き付ける。
ここで、Cと合同な円板C'をAで外接させ、
C’上の接点とPを接着する。
C'がCに接しながら糸を弛ませずに反時計回りに
Cを一周する。
(但し、始めからしばらくはC'に糸は巻きつかない)
Pの軌跡の長さを求めよ。

解答形式

Xπ+Y(X,Yは有理数)の形になるので
X+Yを最もシンプルな形で答えよ。
(但し、X,Yは正の数とは限らない)
不正解となった場合、Xπ+Yもしくは簡単な方針を質問欄に入れてくれると助かります

難しい求積

mim 自動ジャッジ 難易度:
1日前

0

問題

ある三角形OABにおいて
OP=sOA、OQ=tOBとなるように
P,Qを半直線OA,OB上におく(0<s,t<1)
そして、点Rを次のように定める
・Rは四角形ABQPの内部に存在し、
  |O-AB|:|O-PQ|=|R-AB|:|R-PQ|を満たす
(但し、|X-YZ|は点Xから直線YZへの距離とする)
このとき、s,tがs+t=1を満たしながら変動する。
Rの存在領域の面積を求めよ!!

解答形式

〈(10D+E)√F−Gπ〉|△OAB|÷9√3と表せるので(D,E,F,Gは数字)、四桁の数DEFGを答えよ

開催したコンテスト

まだ開催したコンテストがありません

参加したコンテスト

まだ参加したコンテストがありません