正方形2つを図のように配置しました。青で示した角の大きさを求めてください。
$x=a$ 度です。$0\leq a\lt 180$ を満たす整数 $a$ を半角数字で解答してください。
Discordでログイン パスワードでログイン
ログインすると? ログインすると、解答・ギブアップをする他に、問題を投稿したり、ランキングで競うことができます。
または
ログインせずに解答する
この問題を解いた人はこんな問題も解いています
図のような半円2つと正方形を組み合わせた図形があります。2つの半円弧に引いた接線が直交しているとき、図中の青で示した角の角度を求めてください。
度数法で単位を付けずに0以上180未満の数を半角で解答してください。 例:$x=120°$であれば、120 と解答
$\angle C=90°$ である $\triangle ABC$ において, $C$ から $AB$ へおろした垂線の足を $P$ , $\angle C$ の二等分線と $AB$ との交点を $Q$ とします. $AQ=3,BQ=4$ のとき, $PQ$ の長さを求めてください. (下図には $CP⊥AB$ であることが書かれていませんので, 注意してください. )
互いに素な正整数 $a,b$ によって $PQ=\dfrac{a}{b}$ と表せるので, $a+b$ の値を半角数字で解答してください.
図の条件のもとで、緑の正三角形の面積を求めてください。 ※ hexagram : 六芒星
半角数字で回答してください。
問題文に誤りがあったため、修正しました。
頂角が $30$ 度または $90$ 度である二等辺三角形を図のように配置しました。このとき、ピンクで示した角の大きさは何度ですか?
ピンクの角 $=x$ 度です。$x$ に当てはまる $0$ 以上 $180$ 未満の値を半角数字で解答してください。
図の条件の下で、ピンクで示した線分の長さ $x$ を求めてください。 なお、外側の四角形は正方形です。
半角数字で解答してください。
図の条件の下で、青で示した線分の長さ $x$ を求めてください。 なお、緑で示した2つの角の大きさは等しく、ピンクで示した点は三角形の重心です。
図の条件の下で、ピンクで示した線分の長さを求めてください。
互いに素な正整数 $a,b$ を用いて $x=\dfrac{a}{b}$ と表せるので $a+b$ の値を解答してください。
図の条件の下で、線分 $CG$ の長さを求めてください。 ※図中の各線分の長さの比は正確とは限りません。
互いに素な正整数 $a,b$ によって $CG=\dfrac{a}{b}$ と表せるので、$a+b$ の値を半角数字で解答してください。
図のように長方形や直角三角形の内接円が配置されています。青で示した角の角度を求めてください。
度数法で求め、半角数字で0以上360未満の整数を解答してください。 ※度や°などの単位は付けないでください。
正方形・正三角形・円を組み合わせた以下の図について、$x$で示した角の大きさを求めてください。
半角数字で、0以上180未満の整数を解答してください。 「度」や「°」などの単位を付けないよう注意してください。
半円弧を組み合わせた以下の図について、緑で示した部分の面積を求めてください。 大きい半円の直径は6、小さい半円弧の直径は3であり、大きい半円の弧は灰色の点によって6等分されています。
解答は $\dfrac{a}{b}\pi$ となるので、$a+b$ を解答してください。 ただし、$a,b$ は互いに素な正整数です。
正方形に図のように線を引きました。外側の正方形の一辺が10のとき、青で示した部分の面積を求めてください。
解答は自然数 $a,b$ によって $\dfrac{a}{b}$ と表せるので $a+b$ の値を半角数字で解答してください。