【解1・最短ルートと思われる想定解】
$B$を通り辺$AC$に平行な直線と,$C$を通り辺$AB$に平行な直線との交点を$G$とする.このとき,四角形$ABGC$は平行四辺形である.
次に,2直線$BF,CG$の交点を$H$,2直線$CF,BG$の交点を$I$とする.このとき,接弦定理より
$\angle CBH=BDP$,$\angle BCI=CEQ$
これらと$\angle DBP=\angle BCH$,$\angle CBI=\angle ECQ$より,
$\triangle BCH\sim\triangle DBP$,$\triangle CBI\sim\triangle ECQ$が,それぞれ二角相等より成り立つ.これより,
$BC:CH=DB:BP$ $\therefore CH=3$
$CB:BI=EC:CQ$ $\therefore BI=4$
ところで,平行四辺形の対辺はそれぞれ等しいから,
$CG=AB=6$,$BG=AC=8$
このとき,$HG=CG-CH=3$,$IG=BG-BI=4$
よって,$BI=IG$,$CH=HG$だから,$F$は$\triangle BCG$の重心である.
したがって,2直線$BC,FG$の交点を$J$とすると,$J$は線分$BC$の中点となる.
ところで,平行四辺形の2本の対角線は,互いの中点で交わるから,2線分$AG,BC$の交点は,線分$BC$の中点,すなわち$J$である.以上より,4点$A,J,F,G$は一直線上にある.
ここに,中線定理より,
$AB^{2}+AC^{2}=2\left(BJ^{2}+AJ^{2}\right)$ $\therefore AJ=\sqrt{14}$
また,$GJ=AJ=\sqrt{14}$で,重心は各中線を$2:1$に内分するから,
$JF=GJ\cdot\dfrac{1}{3}=\dfrac{\sqrt{14}}{3}$
以上より,$AF=AJ+JF=\boldsymbol{\dfrac{4\sqrt{14}}{3}}$
求めるべき値は,$4+14+3=\boldsymbol{21}$
【※考察】
次の性質があります;
$\triangle ABC$の辺$AB,AC$上に点$E,F$がそれぞれある.辺$BC$上に2点$P,Q$があり,$\triangle BDP$の外接円の$B$における接線と,$\triangle CEQ$の外接円の$C$における接線とが$F$で交わる.一方,$\triangle ACD$の外接円と辺$BC$とが$C$と異なる点$R$で,$\triangle ABE$の外接円と辺$BC$とが$B$と異なる点$S$でそれぞれ交わっている.2直線$AF,BC$の交点を$G$とする.このとき
$$
\dfrac{PR}{BP}=\dfrac{QS}{CQ}\Leftrightarrow BJ=JC
$$
証明は,同様に平行四辺形を作ることで可能です.
【解2・計算地獄】
余弦定理より,
$\cos\angle B=\dfrac{6^{2}+12^{2}-8^{2}}{2\cdot6\cdot12}=\dfrac{29}{36}$ $\therefore\sin\angle B=\dfrac{\sqrt{455}}{36}$
$\cos\angle C=\dfrac{8^{2}+12^{2}-6^{2}}{2\cdot8\cdot12}=\dfrac{43}{48}$ $\therefore\sin\angle C=\dfrac{\sqrt{455}}{48}$
再び余弦定理より,
$DP=\sqrt{1^{2}+4^{2}-2\cdot1\cdot4\cos\angle B}=\dfrac{\sqrt{95}}{3}$
$EQ=\sqrt{1^{2}+3^{2}-2\cdot1\cdot3\cos\angle C}=\dfrac{\sqrt{74}}{4}$
接弦定理より$\angle FBC=BDP=\alpha$,$\angle FCB=\angle CEQ=\beta$とおける.このとき正弦定理より,
$\dfrac{1}{\sin\alpha}=\dfrac{\dfrac{\sqrt{95}}{3}}{\sin\angle B}$ $\therefore\sin\alpha=\dfrac{\sqrt{91}}{12\sqrt{19}}$ $\therefore\cos\alpha=\dfrac{23\sqrt{5}}{12\sqrt{19}}$
$\dfrac{1}{\sin\beta}=\dfrac{\dfrac{\sqrt{74}}{4}}{\sin\angle C}$ $\therefore\sin\beta=\dfrac{\sqrt{455}}{12\sqrt{74}}$ $\therefore\cos\beta=\dfrac{101}{12\sqrt{74}}$
$BF=b,CF=c$とおき,再び正弦定理より,
$\dfrac{c}{\sin\alpha}=\dfrac{b}{\sin\beta}$ $\therefore c=\dfrac{\sqrt{74}}{\sqrt{95}}b$
ところで,
$\sin\left(\angle B+\alpha\right)=\dfrac{\sqrt{455}}{36}\cdot\dfrac{23\sqrt{5}}{12\sqrt{19}}+\dfrac{29}{36}\cdot\dfrac{\sqrt{91}}{12\sqrt{19}}=\dfrac{\sqrt{91}}{3\sqrt{19}}$
$\therefore\cos\left(\angle B+\alpha\right)=\dfrac{4\sqrt{5}}{3\sqrt{19}}$
$\sin\left(\angle C+\beta\right)=\dfrac{\sqrt{455}}{48}\cdot\dfrac{101}{12\sqrt{74}}+\dfrac{43}{48}\cdot\dfrac{\sqrt{455}}{12\sqrt{74}}=\dfrac{\sqrt{455}}{4\sqrt{74}}$
$\therefore\cos\left(\angle C+\beta\right)=\dfrac{27}{4\sqrt{74}}$
一方,余弦定理より
$AF=\sqrt{6^{2}+b^{2}-2\cdot6\cdot b\cdot\cos\left(\angle B+\alpha\right)}$
$=\sqrt{b^{2}-\dfrac{16\sqrt{5}}{\sqrt{19}}b+36}$ …①
$AF=\sqrt{8^{2}+c^{2}-2\cdot8\cdot c\cdot\cos\left(\angle C+\beta\right)}$
$=\sqrt{\dfrac{74}{95}b^{2}-\dfrac{108}{\sqrt{95}}b+64}$ …②
①=②より,
$\sqrt{b^{2}-\dfrac{16\sqrt{5}}{\sqrt{19}}b+36}=\sqrt{\dfrac{74}{95}b^{2}-\dfrac{108}{\sqrt{95}}b+64}$
これを解くと,$b=-2\sqrt{95},\dfrac{2\sqrt{95}}{3}$であり,$b>0$より,$b=\dfrac{2\sqrt{95}}{3}$
これを①に代入し,$AF=\boldsymbol{\dfrac{4\sqrt{14}}{3}}$
求めるべき値は,$4+14+3=\boldsymbol{21}$
この問題を解いた人はこんな問題も解いています