No.04 平方根と有理数

Prime-Quest 自動ジャッジ 難易度: 数学 > 高校数学
2024年1月28日19:00 正解数: 3 / 解答数: 3 (正答率: 100%) ギブアップ数: 0

問題

$(1)$ $1-\dfrac{2}{x}=\sqrt{2-\sqrt 3}$ のとき,$x^3=\dfrac{ax+b}{|x^2-20|}$ となる有理数 $a,b$ を求めよ.
$(2)$ $60|p-q\sqrt 3|\lt 1\leqq p-4\leqq 100$ を満たす整数 $p,q$ は存在するか.

解答形式

命題が真なら $|a+1|$,偽なら $|b+1|$ の値を半角数字で入力してください.


ヒント1

$(1)$ $x$ の有理化と四次方程式 $P=0$ から $x^5-20x^3=PQ+R$ の形を作ります.

ヒント2

$(2)$ 区間 $0\leqq \ell\lt 1$ の $60$ 等分と,数列 $0,\sqrt 3,\cdots,60\sqrt 3$ の小数部分を考えます.


スポンサーリンク

解答提出

この問題は自動ジャッジの問題です。 解答形式が指定されていればそれにしたがって解答してください。

Discordでログイン Sign in with Google パスワードでログイン

ログインすると? ログインすると、解答・ギブアップをする他に、問題を投稿したり、ランキングで競うことができます。

または


おすすめ問題

この問題を解いた人はこんな問題も解いています

10月前

9

${}$ 西暦2024年問題第4弾です。今回は連分数を素材にしてみました。一風変わった解き心地の問題をお楽しみください。

解答形式

${}$ 解答は有理数$a$と$b$の値を2行に分けて入力してください。値が整数のときにはそのまま整数表現で、非整数のときには既約分数○/△の形で入力することにします。「$a=$」「《1行目》」などの入力は必要ありません。
(例)$a=2024$、$b=\dfrac{1}{4}$ → 《1行目》$\color{blue}{2024}$、《2行目》$\color{blue}{1/4}$

組み合わせ問題1

natsuneko 自動ジャッジ 難易度:
11月前

5

問題文

赤玉 $20$ 個と青玉 $21$ 個の計 $41$ 個の玉を横一列に並べます. このとき, 左から $1$ 番目から $20$ 番目までの玉の中に含まれる赤玉の個数を $R$, 青玉の個数を $B$, 左から $22$ 番目から $41$ 番目までの玉の中に含まれる赤玉の個数を $r$, 青玉の個数を $b$ とします. 玉の並べ方は全部で $ \binom{41}{20}$ 通りありますが, その全ての並べ方に対する $Rb + Br$ の値の相加平均を求めて下さい.

解答形式

答えは互いに素な正整数 $a,b$ を用いて $\cfrac{b}{a}$ と表されるため, $a+b$ の値を解答して下さい.

2年前

1

問題文

数列{a_n}を,
a_1=log2 , a_(n+1)=(na_n+log(2n+1)+log2)/(n+1)
によって定める。
このとき, この数列の一般項 a_n および 極限値 lim(n→∞) (a_n-logn) をそれぞれ求めよ。

記述解答(大雑把で良い)でお願いします。

座標幾何-面積比

n01v4me 自動ジャッジ 難易度:
7月前

1

問題文

$a$と$r$を正の実数とし, $a>\frac{1}{2}$であるものとします.
放物線$K$と円$L$を次のように定めます.
$$K: y=x^2\,\,,\,\,L: x^2+(y-a)^2=r^2$$このとき, $K$と$L$は接しています.その接点を第2象限にあるものを$A$, 第1象限にあるものを$B$とし, 円$L$の中心を$P$, 直線$AP$と円$L$の$A$でない交点を$C$, $x$軸との交点を$Q$とします.また, △$ABC$の面積を$S$,
四角形$PQOB$の面積を$T$とするとき, 次の等式を満たしました.$$\frac{T}{S}=689$$$a$は1つの非負整数に定まりますのでその値を求めてください.

解答形式

非負整数を半角で入力してください.

Final 2にする予定だったもの

seven_sevens 採点者ジャッジ 難易度:
9月前

1

間違えて公開してしまい、回答を一件いただいているので、泣く泣くボツ問としてここに供養します。

$\min(f(x))$を関数$f(x)$の$-\frac{\pi}{2}\leq x\leq\frac{\pi}{2}$における最小値とする。
以下の値を求めよ。
$$\int^{16}_0\min(\tan^2{x}+a\cos{x})da$$
ただし$a$と$x$は独立している。

無限級数1

tsx 自動ジャッジ 難易度:
20月前

1

問題文

級数
$$1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}-\frac{1}{5}-\frac{1}{6}-\frac{1}{7}-\frac{1}{8}+\frac{1}{9}+\frac{1}{10}+\frac{1}{11}+\frac{1}{12}-\frac{1}{13}-\frac{1}{14}-\frac{1}{15}-\frac{1}{16}+\cdots$$
の収束値を求めよ. ただし, この級数の第 $n$ 項の絶対値は $\dfrac{1}{n}$ であり, 各項の符号は $4$ 項ごとに交代する.

解答形式

収束値は $\fbox{A}\text{ - }\fbox{F}$ をいずれも自然数として最も簡単な形で $\displaystyle{\frac{\fbox{A}+\fbox{B}\sqrt{\fbox{C}}}{\fbox{D}}\pi+\frac{\log{\fbox{E}}}{\fbox{F}}}$
と 表されます. 文字列 $\fbox{A}\,\fbox{B}\,\fbox{C}\,\fbox{D}\,\fbox{E}\,\fbox{F}$ を解答してください.

自作問題2

iwashi 自動ジャッジ 難易度:
7月前

1

問題文

表面積が$\displaystyle n \sin \frac{2\pi}{n}$である正$n$角錐の体積の最大値を$V_n$とする。極限値
$$\begin{eqnarray}
A &=& \lim_{n \to \infty} V_n \\
B &=& \lim_{n \to \infty} n^2 (V_n -A )
\end{eqnarray}$$を求めよ。

解答形式

$A,B$は
$$
A = \fboxア \frac{\pi^\fboxイ}{\fboxウ} , \qquad B = \fboxエ \frac{\fboxオ \pi^\fboxカ}{\fboxキ}
$$となるので文字列「$\fboxア\fboxイ\fboxウ\fboxエ\fboxオ\fboxカ\fboxキ$」をすべて半角で1行目に答えてください。ただし$\fboxア\fboxエ$は$\texttt{+-}$のどちらか、$\fboxイ\fboxウ\fboxオ\fboxカ\fboxキ$は自然数であり、$\fboxオ$と$\fboxキ$は互いに素です。例えば$\displaystyle A=+\frac{\pi^{2}}{3},B=-\frac{5\pi^{7}}{11}$としたいときは+23-5711と回答してください。計算して-5688とはしないでください。

多項式の割り算

sha256 自動ジャッジ 難易度:
8月前

9

問題文

$n,m \ (m\geq n)$を正整数の定数とし、多項式$f(x)$を$f(x)=x^m$で定めます。
$f(x)$を$(x-2)^n$で割った商$Q(x)$について、$Q(2)=40$が成立しました。

$(n,m)$の組としてあり得るもの全てについて、$nm$の総和を求めてください。

解答形式

正整数値を半角で入力してください。

円と3本の線分

tb_lb 自動ジャッジ 難易度:
17月前

12

【補助線主体の図形問題 #102】
 今週の図形問題です。ある素朴な性質を元に作問しました。手慣れた方は暗算で行けるかもしれません。それぞれお好きなようにお楽しみください。

解答形式

${
\def\cm{\thinspace \mathrm{cm}}
}$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。
(例) $12\cm$ → $\color{blue}{12.00}$  $10\sqrt{2}\cm$ → $\color{blue}{14.14}$  $\dfrac{1+\sqrt{5}}{2} \cm$ → $\color{blue}{1.62}$
 入力を一意に定めるための処置です。
 たとえば答えに無理数を含む場合、$\sqrt{2}=1.41$や$\pi=3.14$などでは必要な桁が足りない場合があるのでご注意ください。
 近似値を求める際には、関数電卓やグーグルの電卓機能、Wolfram|Alpha https://www.wolframalpha.com などのご利用をお勧めします。

9月前

8

【補助線主体の図形問題 #126】
 今週の図形問題です。隙あらば暗算で処理できる程度の問題を好んで出題しているのですが、今回は暗算処理は厳しいかもしれません。紙&ペンをご用意の上、挑戦していただければと思います。

解答形式

${
\def\cm{\thinspace \mathrm{cm}}
}$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。
(例) $12\cm$ → $\color{blue}{12.00}$  $10\sqrt{2}\cm$ → $\color{blue}{14.14}$  $\dfrac{1+\sqrt{5}}{2} \cm$ → $\color{blue}{1.62}$
 入力を一意に定めるための処置です。
 たとえば答えに無理数を含む場合、$\sqrt{2}=1.41$や$\pi=3.14$などでは必要な桁が足りない場合があるのでご注意ください。
 近似値を求める際には、関数電卓やグーグルの電卓機能、Wolfram|Alpha https://www.wolframalpha.com などのご利用をお勧めします。

10月前

6

問題文

鋭角三角形ABCについて,外心をO,重心をG,垂心をH,内心をIとします.
$$AO=\dfrac{325}{24}, AH=\dfrac{125}{12}, AG=\sqrt{145}$$
であるとき,$AI$の2乗を答えてください.

解答形式

答えは非負整数なので非負整数値を入力してください.

正方形の中の八角形の面積

Fuji495616 自動ジャッジ 難易度:
9月前

8

問題文

四角形ABCDは正方形で、点E,F,G,Hは辺の中点です。四角形ABCDの面積が54㎠のとき、青い部分の面積は何㎠ですか。

解答形式

半角数字で入力してください。
例)10