No.05 連立方程式と不等式

Prime-Quest 自動ジャッジ 難易度: 数学 > 高校数学
2024年2月4日19:00 正解数: 4 / 解答数: 6 (正答率: 66.7%) ギブアップ数: 0

問題

次の実数 $a,b,c$ に対し,つねに $|ax+by|\leqq |c|$ となる実数 $x,y$ の和の値域幅を求めよ.

  • $p,q$ の連立方程式 $ap+bq=c,\ (b-c)p+(c+a)q=a+7b$ は解を複数個もつ.

解説

まず,方程式の一方が $0p+0q=0$ の形なら他方も同じ形になり,それ以外は係数比の一致から以下のように表せる.$$ka=b-c,\quad kb=c+a,\quad kc=a+7b\quad (k\neq 0)$$ ここで,$k(a+b)=a+b$ から $k=1$ のとき,$a=b-c=c-7b$ より $c=4b,\ a=-\,3b$ であり,$a=-\,b$ のとき,$b:c=(c-b):6b$ を整理して $c=-\,2b,3b$ を得る.よって,実数 $a,b,c$ の比は $(-\,3,1,4),(1,-\,1,2),(-\,1,1,3)$ に絞られて,$3x-y=r,\ x-y=s$ とおくと,$|r|\leqq 4,\ |s|\leqq 2$ より $x+y=r-2s$ の値域幅は $8+8=\boldsymbol{16}$ となる.

参考

$xy$ 平面の平行四辺形 $|3x-y|\leqq 4,\ |x-y|\leqq 2$ と直線 $x+y=t$ が共有点をもつ条件からも $-\,8\leqq t\leqq 8$ を導ける.

また,その四辺形は原点対称かつ二頂点が $(1,-\,1),(3,5)$ であり,$rs$ 平面の長方形 $|r|\leqq 4,\ |s|\leqq 2$ に写した面積比は $\dfrac{8\cdot 4}{2|5+3|}=2$ より線形変換 $\begin{pmatrix} x \\ y \end{pmatrix}\mapsto\begin{pmatrix} r \\ s \end{pmatrix}$ の行列 $A=\begin{pmatrix} 3 & -\,1 \\ 1 & -\,1 \end{pmatrix}$ における $|\det A|$ の値と一致することがわかる.


おすすめ問題

この問題を解いた人はこんな問題も解いています

極限

sulippa 自動ジャッジ 難易度:
9月前

7

問題文

n を正の整数とし、$p$ を素数とする。$n!$ の素因数分解における $p$ の指数を $E_p(n!) = \sum_{k=1}^{\infty} \lfloor \frac{n}{p^k} \rfloor$ とする。

量 $Q_n$ を次のように定義する。
$$ Q_n = \sum_{p \le n} \left( \frac{n}{p-1} - E_p(n!) \right) \log p $$
ただし、和は $n$ 以下の全ての素数 $p$ を走り、$\log$ は自然対数とする。

次の極限値を求めよ。
$$ \lim_{n \to \infty} \frac{Q_n}{n} $$

ただし、オイラー・マスケロー二定数を $γ$ とする。

解答形式

半角で

345

hkd585 自動ジャッジ 難易度:
3年前

4

問題文


$AB=AC=3$ なる $\triangle ABC$ がある.辺 $BC$ の $C$ 側の延長上に,$AD=5$ なる点 $D$ をとる.$\triangle ABD$ の外接円において,$B$ を含まない弧 $AD$ 上に,$DE=4$ なる点 $E$ をとる.直線 $CE$ と $\triangle ABD$ の外接円との交点のうち,$E$ でないものを $F$ としたら,$EF=\dfrac{48}{\sqrt{91}}$ となった.このとき,
$$
BF=\dfrac{a}{b}
$$
である.ただし,$a,b$ は互いに素な自然数である.

$\boldsymbol{\underline{a^{2}+b^{2}}}$ の値を求めよ.

解答形式

半角数字で解答してください.

No.01 展開と因数分解

Prime-Quest 自動ジャッジ 難易度:
2年前

6

問題

$(1)$ $4$ つの実数 $(10\pm\sqrt 2\pm 4\sqrt 3)^3+1$ の和と等しい整数の最大素因数を求めよ.
$(2)$ 方程式 $(2x^2-x)(2x^2-7x+6)=7$ の実数解 $x$ に対する $x^5-\dfrac{1}{x^5}$ の値を求めよ.

解答形式

$(1),(2)$ の和を半角数字で入力してください.

自作問題A1

imabc 自動ジャッジ 難易度:
23月前

12

問題文

正の実数 $x,y,z$ が $xyz=x+y+z+2$ を満たしています.このとき, $x+4y+9z$ の最小値を求めてください.

解答形式

答えを入力してください.


${}$ 西暦2025年問題第5弾です。今回は覆面算風味の整数問題です。けれども、独特な解き心地があります。単一解であるのを前提にして構いませんので、じっくりと味わってください。

解答形式

${}$ 解答は指定の積をそのまま入力してください。
(例)105 → $\color{blue}{105}$

整数問題

smasher 自動ジャッジ 難易度:
4月前

10

問題文

$x,y$を整数、$p$を素数とする。
$x^2-xy+y^2=2^p$を満たす組$(x,y,p)$をすべて求めよ。

解答形式

$x+y+p$の値としてありうる値の総和を半角数字で入力してください。

タイル塗り

G414xy 自動ジャッジ 難易度:
18月前

7

問題文

縦4列、横4行の16マスのうち、いくつかに色を塗ります。塗られるマスの数が列ごとに相異なり、行ごとに相異なる(但し、列と行で塗られる数が一致しても良い)、場合、塗り方は何通りありますか?

解答形式

半角数字で入力してください。


問題文

三角形 $ABC$ があり,以下が成り立っています:

$$AB = 7 , \angle A + 2\angle C = 60^{ \circ } .$$

いま,辺 $BC$ 上に $\angle CAP = 3\angle BAP$ をみたす点 $P$ をとり,さらに辺 $AC$ 上に $\angle APQ = 2\angle ACB$ をみたす点 $Q$ をとったところ,$BQ = 2$ が成立しました.このとき,線分 $AC$ の長さは互いに素な正整数 $a , b$ を用いて $\dfrac{ a }{ b }$ と表せるので,$a + b$ を解答してください.

解答形式

半角数字で解答してください.

Reverse digits (学コン2024-12-3)

Lim_Rim_ 自動ジャッジ 難易度:
10月前

6

問題文

10の倍数でない正の整数 $n$ に対し, $f(n)$は, 十進法表示で $n$ を $1$ の位から逆の順番で読んで得られる正の整数として定めます. たとえば$f(123456789) = 987654321$です. $n+f(n)$が81の倍数となるような十進法で10桁の$n$の個数を解答してください.

備考

本問は大学への数学2024年12月学コン3番に掲載されている自作問題です.

21月前

10

問題文

図のような、一目盛りが1cmの方眼に書いた図形があります。三角形ABCと三角形ACEは合同で、角ADF=90°です。DFは何cmですか。

解答形式

四捨五入して小数第2位まで、半角数字で答えてください。
例)$\frac{52}{3}$→17.33

三角関数の計算⑵

hkd585 自動ジャッジ 難易度:
3年前

5

問題文

次の計算をせよ.

$$
\sum_{k=1}^{2023}\sec\dfrac{6k-5}{6069}\pi\quad
$$

ただし,$\sec\theta=\dfrac{1}{\cos\theta}$とする.

解答形式

解答は整数となります.そのまま半角で入力してください.

2月前

5

問題文

以下の $x$ に関する $3$ 次方程式は相異なる $3$ 個の複素数解をもつので,それぞれの解を $\alpha,\beta,\gamma$ とします.
$$x^3-2^{2025}x^2+24x-2^{2023}=0$$

このとき,以下の値は整数になるので,その正の約数の個数を求めてください.
$$(\alpha+\beta)(\beta+\gamma)(\gamma+\alpha)$$

解答形式

整数で解答してください.

補足

https://x.com/atwr0711/status/2000173940698927172?s=20
こちらの31番の問題と同じです.