図のような2つの直角三角形があります。青い角度の和が45°のとき、ア:イを求めなさい。
ア÷イの値を半角で入力してください。 例)ア:イ=7:2 →3.5
Discordでログイン パスワードでログイン
ログインすると? ログインすると、解答・ギブアップをする他に、問題を投稿したり、ランキングで競うことができます。
または
ログインせずに解答する
この問題を解いた人はこんな問題も解いています
下図で、六角形ABCDEFは正六角形、点L,H,G,I,K,Jは六角形ABCDEFの辺の中点です。赤い部分の面積が72㎠のとき、青い部分の面積は何㎠ですか。
半角数字で入力してください。 例)10
ーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーー 誤りがあったため、解答を修正しました。迷惑をおかけして申し訳ありません。
正の整数 $n$ に対し,$n$ の正の約数の個数を $f(n)$ と表します. $f(f(n))=5$ となる最小の正の整数 $n$ を求めてください.
半角数字で解答してください.
$12$桁の整数$111111111111$の素因数の総和を求めてください. 但し,素因数の1つとして4桁の素数が含まれます.
整数で答えてください.
次の計算をせよ。 $$ \frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+\frac{1}{72}+\frac{1}{90} $$
分子/分母 の形で解答してください 既約分数で解答してください 例 1/3
関数$f(x,y)=x²+y²-2x+4y+1$の最小値とそのときの$x,y$の値を求めよ。 ただし、$x,y$はいずれも実数とする。
x=𓏸𓏸,y=𓏸𓏸で、最小値𓏸𓏸と答えてください 数字は全て半角で答えてください
$\dfrac{777777777}{888888}$ は互いに素な正の整数 $a,b$ を用いて $\dfrac{a}{b}$ と表されるので,$a+b$ の値を解答してください.
下図で、三角形ABCは直角二等辺三角形、三角形BCDは直角三角形です。CDの長さが3cm、DBの長さが11cmのとき、三角形ABCの面積は何㎠ですか。
半角数字で回答してください。 例)10
素数 $p,q$ が $$4^p+2^p+1=p^2q$$を満たします. このようなすべての組 $(p,q)$ に対して, $p+q$ の総和を解答してください.
答えは正の整数値となるので, その整数値を半角で入力してください.
正方形$ABCD$の(辺を含まない)外部に点$P$をとったところ,以下が成り立ちました: $$ \angle{ABP}=\angle{DBP} $$ $$ PB=PC $$ このとき、$\angle{PDA}$の大きさを求めてください.
$\angle{PDA}$は度数法で,互いに素な正整数$a$,$b$を用いて$\frac{a}{b}^\circ$と表されるので,$a+b$を半角数字で解答してください.
自然数a b c について abc-ab-a=17 a<b<c となる自然数のa b c の組の数を答えなさい
半角数字で答えてください
次の方程式の整数解を求めよ。 ただし、$p, q$は非負整数である。 $$ x^2-15x+3^p-2^q=0 $$
半角数字で小さい順につなげて入力してください。 例 $x=-4,-1,0,3,4$の時 -4-1034
$1$ 以上 $100000$ 以下の整数から無作為に1つ選ぶとき,全ての桁の数がそれぞれ素数になる確率は,互いに素な正整数 $a,b$ を用いて $\dfrac{a}{b}$ と表せます.$a+b$ を解答してください.
例えば,$23$ は各桁の数が $2$ と $3$ で,これは全ての桁の数が素数になります. $17$ は各桁の数が $1$ と $7$ ですが,$1$ は素数ではないので全ての桁の数が素数にはなりません.
非負整数を半角で回答してください。
問題文を一部変更しましたが答える内容は変わっていません。