自然数の分割

noname 自動ジャッジ 難易度: 数学 > 高校数学
2024年2月25日21:12 正解数: 14 / 解答数: 16 (正答率: 87.5%) ギブアップ数: 0

全 16 件

回答日時 問題 解答者 結果
2024年11月14日13:28 自然数の分割 katsuo_temple
正解
2024年8月26日2:49 自然数の分割 katsuo.tenple
正解
2024年6月9日19:29 自然数の分割 asmin
正解
2024年4月16日18:48 自然数の分割 ゲスト
正解
2024年4月5日18:02 自然数の分割 yozora184
正解
2024年4月5日18:01 自然数の分割 yozora184
不正解
2024年4月5日18:00 自然数の分割 yozora184
不正解
2024年3月19日23:02 自然数の分割 iwashi
正解
2024年3月10日9:21 自然数の分割 orangekid
正解
2024年3月2日11:58 自然数の分割 0__citrus
正解
2024年3月2日11:42 自然数の分割 MARTH
正解
2024年2月28日12:34 自然数の分割 bzuL
正解
2024年2月26日8:15 自然数の分割 ゲスト
正解
2024年2月26日8:13 自然数の分割 sdzzz
正解
2024年2月25日23:10 自然数の分割 natsuneko
正解
2024年2月25日21:58 自然数の分割 nmoon
正解

おすすめ問題

この問題を解いた人はこんな問題も解いています

2024問題

noname 自動ジャッジ 難易度:
9月前

11

$a!+b!+5c^2=2024$となる自然数$a,b,c$の組$(a,b,c)$を全て求めよ。

**入力形式**
(a,b,c)=(1,1,1),(2,3,4),...というふうに半角で入力してください。区切る時は,を用いてください。(順不同)

単純な整数問題

adg 自動ジャッジ 難易度:
7月前

23

問題

自然数a b c について
abc-ab-a=17
a<b<c
となる自然数のa b c の組の数を答えなさい

解答形式

半角数字で答えてください

座王001(サドンデス3)

shoko_math 自動ジャッジ 難易度:
8月前

11

問題文

$101\times101$ のマス目の各マスには $0,1$ のいずれかが書かれており,どの $2\times2$ のマス目についても $0,1$ が少なくとも $1$ つずつは書き込まれているとき,マス目に書かれた数の和の最大値を求めてください.

解答形式

半角数字で解答してください.

8月前

9

問題文

$\triangle{ABC}$ の辺 $AC$ に接する傍接円の中心を $I_B$,辺 $AB$ に接する傍接円の中心を $I_C$ とし,$I_BI_C$ の中点を $M$ とする.
$I_BI_C=14,BC=10$ のとき,$\triangle{MBC}$ の面積を $2$ 乗した値を解答してください.

解答形式

半角数字で解答してください

SMC100(問題5)

shoko_math 自動ジャッジ 難易度:
8月前

38

問題文

正の整数 $n$ に対し,$n$ の正の約数の個数を $f(n)$ と表します.
$f(f(n))=5$ となる最小の正の整数 $n$ を求めてください.

解答形式

半角数字で解答してください.

8月前

11

問題文

直線 $AT$ に点 $T$ で接する円 $\Gamma$ を描き,$A$ を通る直線 $m$と円 $\Gamma$ の交点を $A$ に近い方から順に $B,C$ とします.
また,$\angle{CAT}$ の二等分線と直線 $BT$,直線 $CT$ の交点をそれぞれ $D,E$ とします.
$BD=4,DE=8,EC=9$ となったとき,$\triangle{TBC}$ の面積を $S$ とすると,$S^2$ は互いに素な正の整数 $a,b$ を用いて $\dfrac{a}{b}$ と表されるので,$a+b$ の値を解答してください.

解答形式

半角数字で解答してください.

座王001(サドンデス1)

shoko_math 自動ジャッジ 難易度:
8月前

18

問題文

$m$ を正の整数とします.「任意の正の整数 $n$ について,「 $n^3$ が $10!$ の倍数ならば $n^2$ は $m$ の倍数である」が成り立つ」という主張が正しくなるような最大の $m$ を求めてください.

解答形式

半角数字で解答してください.

200G

MrKOTAKE 自動ジャッジ 難易度:
3月前

11

問題文

AB=5, AC=7の△ABCがあり重心をG,内心をIとするとBC//GIであった. このとき△ABCの面積の2乗を解答してください.

解答形式

答えは正の整数値となるので, その整数値を半角で入力してください.

座王001(G1)

shoko_math 自動ジャッジ 難易度:
8月前

13

問題文

鋭角三角形 $ABC$ の垂心を $H$,外心を $O$ とし,$A$ から $BC$ に下ろした垂線の足を $D$ とします.
$OH=3,AH:HD=7:2$ であり,$\triangle{ABC}$ の外接円半径が $5$ であるとき,${OD}^2$ の値は互いに素な正の整数 $a,b$ を用いて $\dfrac{a}{b}$ と表せるので,$a+b$ の値を解答してください.

解答形式

半角数字で解答してください.

100G

MrKOTAKE 自動ジャッジ 難易度:
3月前

14

問題文

中心がOの円と線分ABの二つの交点のうちAから近い順にC,Dとすると
BO=11, CO=7, AC=CD=DB であった.
このとき△ABOの面積の2乗を解答してください.

解答形式

答えは正の整数値となるので, その整数値を半角で入力してください.


問題文

以下の値を求めてください。
$$
\begin{align}
\sum_{k=1}^{33333^2+200\cdot33333}\sqrt{\frac{2k+19999-2\sqrt{k^2+19999k+99990000}}{k^2+19999k+99990000}}
\end{align}
$$

解答形式

答えは互いに素な正整数$p,q$を用いて$\frac{p}{q}$と表されるので、
$p+q$の値を解答してください。


制作者の声

(誰かがもう作ってそうです...知っている方がいれば教えてほしいです)

2人で肩にpを乗せて

kusu394 自動ジャッジ 難易度:
6月前

12

問題文

素数 $p,q$ が
$$4^p+2^p+1=p^2q$$を満たします. このようなすべての組 $(p,q)$ に対して, $p+q$ の総和を解答してください.

解答形式

答えは正の整数値となるので, その整数値を半角で入力してください.