以下の条件を満たすような $15$ 個の白石と $15$ 個の黒石の並べ方は何通りありますか.
非負整数で解答してください.
Discordでログイン パスワードでログイン
ログインすると? ログインすると、解答・ギブアップをする他に、問題を投稿したり、ランキングで競うことができます。
または
ログインせずに解答する
この問題を解いた人はこんな問題も解いています
三角形 $ABC$ の辺 $BC$ の中点を $M$ とし,辺 $AB,AC$ 上にそれぞれ点 $D,E$ をとると,以下が成立した:
$$\angle{DME}=90^{\circ},AD=6,DB=2,AE=7,EC=3$$
このとき,辺 $BC$ の長さの $2$ 乗を求めてください.
桁数が偶数の自然数$n$の各位を$2$桁ごとに分割し、そうしてできる自然数の和を$S(n)$のする。例えば、 $S(2024)=20+24=44,S(120321)=12+3+21=36$ である。 さて、 $n+S(n)=5233$ を満たすような$n$を全て求めよ。
$n$の値を整数でお答えください。
以下の条件を全て満たす $20001$ 個の整数の組 $(a_0,a_1,…,a_{20000})$ を 階段状な組 と定義します.
また,階段状な組 $A=(a_0,a_1,…,a_{20000})$ に対して スコア $S(A)$ を以下のように定めます.
階段状な組全てに対してスコア $S(A)$ の総和を求め,その値が $2$ で割り切れる最大の回数を求めてください.
答えを入力してください.
すべての正整数 $n$ に対して $a_{n+1}=a_{n}+a_{n+2}$ を満たす数列 $\{a_n\}$ に対して、次の式が成立する。
$$\sum_{n=1}^\infty \frac{a_n}{2^n}=1998, \sum_{n=1}^\infty \frac{a_{3n}}{3^n}=1106$$
この時、$|a_{1998}a_{1106}|$を求めよ。
答えをそのまま入力しなさい。
$S=\{1,2,3,4,5,6\}$ とします.$S$ の相異なる部分集合 $A,B,C$ の組であって,$A\subset B\subset C$ を満たすものの個数を求めてください. (ただし,$A,B,C$ は空集合や $S$ に一致してもよいものとします.)
半角数字で解答してください.
$4\times4$ のマス目の各マスに $3,2,6$ のいずれかを書き込む方法のうち,どの横の行に書かれた $4$ 数の積も立方数であり,どの縦の列に書かれた $4$ 数の積も立方数であるような書き込み方は何通りあるかを求めてください. ただし,回転や裏返しにより一致する書き込み方も異なるものとして数えるものとします.また,$3,2,6$ のうち使わない数があっても構いません.
$n$ を正の整数とする.縦 $3$ 行,横 $3$ 列からなるマス目の各マスに $n,n+1,\ldots,n+8$ を重複なく書き入れる方法であって,以下を満たすものの数を $f(n)$ とします.
ただし,回転や反転によって一致する数の書き込み方は,区別するものとします.$f(n)\lt3\times10^5$ を満たすとき,$f(n)$ としてあり得る最大の値を解答してください.
関数列 $\{f_n\}_{n=0,1,\dots}$ が以下を満たします.
また, 実数列$\{A_n\}_{n=1,2,\dots}, \{B_n\}_{n=1,2,\dots}$を以下のように定義します.
$B_{24}$ の値を求めてください.
任意の二次関数$\ f\ $についてある$\ \theta \ (0\le \theta \le 2\pi)$があって,$\ xy$座標平面上で$\ y=f(x)\ $を$\ \theta \ $反時計回りに回転させたものを考える.$\ $これがある関数$\ g(x)\ $で$\ y=g(x)\ $と表せるときの$\ \theta\ $としてありうるものの総和を$\ S\ $とするとき$\ S\ $を超えない最大の整数を回答して下さい.
整数で回答してください.
中心が$O$の円と線分$AB$の二つの交点のうち$A$から近い順に$C,D$とすると $BO=11,CO=7,AC=CD=DB$ であった. このとき三角形$ABO$の面積の$2$乗を解答してください.
答えは正の整数値となるので,その整数値を半角で入力してください.
縦 $5$ 列、横 $8$ 列、合計 $40$ 個の机があり、これらの上に合計 $8$ 冊の本を置くことを考えます。 どの縦・横の列にも最低 $1$ 冊の本が置かれた机のある本の置き方は何通りありますか? ただし、同じ列に本が置かれた机が複数あっても構いません。
非負整数を半角で入力してください。
解答に誤りがあったため再投稿
鋭角三角形ABCについて,外心をO,重心をG,垂心をH,内心をIとします. $$AO=\dfrac{325}{24}, AH=\dfrac{125}{12}, AG=\sqrt{145}$$ であるとき,$AI$の2乗を答えてください.
答えは非負整数なので非負整数値を入力してください.