とある数列

amberGames-777 自動ジャッジ 難易度: 数学 > 中学数学
2024年3月28日15:49 正解数: 21 / 解答数: 21 (正答率: 100%) ギブアップ数: 0
数列 数学

問題文

3,1,4,1,5,9,2,?
この数列で、?に入る数字は何?

解答形式

半角の数字1桁を入力してください。


ヒント1

314で思い当たる数と言えば?


スポンサーリンク

解答提出

この問題は自動ジャッジの問題です。 解答形式が指定されていればそれにしたがって解答してください。

Discordでログイン Sign in with Google パスワードでログイン

ログインすると? ログインすると、解答・ギブアップをする他に、問題を投稿したり、ランキングで競うことができます。

または


おすすめ問題

この問題を解いた人はこんな問題も解いています

分数の足し算

tsukemono 自動ジャッジ 難易度:
10月前

29

問題文

次の計算をせよ。
$$
\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+\frac{1}{72}+\frac{1}{90}
$$

解答形式

分子/分母 の形で解答してください
既約分数で解答してください
例 1/3

確率

Ultimate 自動ジャッジ 難易度:
8月前

10

問題文

5進数で表された[2024]を2進数で表せ。

解答形式

数字のみでOK

2変数関数の最大最小

tsukemono 自動ジャッジ 難易度:
10月前

29

問題文

関数$f(x,y)=x²+y²-2x+4y+1$の最小値とそのときの$x,y$の値を求めよ。
ただし、$x,y$はいずれも実数とする。

解答形式

x=𓏸𓏸,y=𓏸𓏸で、最小値𓏸𓏸と答えてください
数字は全て半角で答えてください

方程式の解の個数

tsukemono 自動ジャッジ 難易度:
10月前

12

問題文

$a$を定数とする。
このとき、$x$についての方程式$|x²+6x-7|-a=0$ の実数解の個数が3個になるような$a$の値を求めよ。

解答形式

a=𓏸𓏸というふうに解答してください。
また、全て半角で解答してください。
答えのみ入力してください。

知ってたら簡単な整数問題

noname 自動ジャッジ 難易度:
10月前

20

${999}$を2以上の最小の$2$つの立方数の差で表せ。

問題を一部訂正しました。毎度毎度誠に申し訳ございません。問題ミスがあったためこれまでの解答は正解にしました。

解答形式

a>b>1の自然数を用いてa^3-b^3というふうに表せるのでabと2つの整数を連続して半角で書いてください。
(例:15^3-3^3なら解答は153)

中学数学

Ultimate 自動ジャッジ 難易度:
8月前

17

問題文

√5の小数部分をaとするとき、a-√5の値を求めよ。

解答形式

数字や符号は半角で解答してください


問題文

$\dfrac{777777777}{888888}$ は互いに素な正の整数 $a,b$ を用いて $\dfrac{a}{b}$ と表されるので,$a+b$ の値を解答してください.

解答形式

半角数字で解答してください.

複素数の2乗

amberGames-777 自動ジャッジ 難易度:
9月前

6

問題文

(1+i)^2を計算してください。

解答形式

半角で入力してください。

三乗の和

noname 自動ジャッジ 難易度:
7月前

18

問題文

連続する8つの正整数の三乗の和で表せる数のうち、2000に最も近いものを求めよ。

解答形式

半角で入力してください。

積分

tsukemono 自動ジャッジ 難易度:
10月前

25

問題文

次の定積分を求めよ。
$$
\int_{-1}^1\quad(x^{101}+2x^{99}+3x^{97}+・・・+51x)dx
$$

解答形式

半角数字のみを使って解答してください。

新春問題

arc_sin 自動ジャッジ 難易度:
12月前

22

問題文

2024^2023の正の約数の個数はいくつか?

解答形式

半角で回答
例)100

素数の確率問題

koukiyayo 自動ジャッジ 難易度:
8月前

34

問題文

$1$ 以上 $100000$ 以下の整数から無作為に1つ選ぶとき,全ての桁の数がそれぞれ素数になる確率は,互いに素な正整数 $a,b$ を用いて $\dfrac{a}{b}$ と表せます.$a+b$ を解答してください.

例えば,$23$ は各桁の数が $2$ と $3$ で,これは全ての桁の数が素数になります.
$17$ は各桁の数が $1$ と $7$ ですが,$1$ は素数ではないので全ての桁の数が素数にはなりません.

回答形式

非負整数を半角で回答してください。

問題文を一部変更しましたが答える内容は変わっていません。