半径が $4$ の円 $\Omega$ 上に2点 $A, B$ を直径をなさないようにとり,$A, B$ における $\Omega$ の接線の交点を $C$ とします.三角形 $ABC$ の垂心を $H$ とし,3点 $A, C, H$ を通る円と $\Omega$ の交点を $D$ とすれば,$AB=CD$ が成り立ちました.このとき,三角形 $ABC$ の面積の $2$ 乗を求めてください.
追記:$D\neq A$ とします.
半角数字で解答してください.
この問題を解いた人はこんな問題も解いています