F

Furina 自動ジャッジ 難易度: 数学 > 競技数学
2024年6月9日21:00 正解数: 7 / 解答数: 11 (正答率: 63.6%) ギブアップ数: 1
この問題はコンテスト「N村杯Shortlist 001」の問題です。

問題文

$AB<AC$ なる三角形 $ABC$ について,$\angle A$ (内角) の二等分線と $BC$,円 $ABC$ の交点をそれぞれ $D, M(\neq A)$,$A$ から $BC$ に下ろした垂線の足を $E$,$AC$ の中点を $N$,円 $ENC$ と円 $ABC$ の交点を $X(\neq C)$,円 $XMD$ と $BC$ の交点を $P(\neq D)$,$PM$ の中点を $Q$ とします.
$$AB=9, AC=14, QN=8$$
であるとき,$BC$ の長さは正整数 $a, b, c$ を用いて $\dfrac{a\sqrt b}{c}$ と表せるので,$a+b+c$ を解答してください.

解答形式

半角数字で解答してください.


スポンサーリンク

解答提出

この問題は自動ジャッジの問題です。 解答形式が指定されていればそれにしたがって解答してください。

Discordでログイン Sign in with Google パスワードでログイン

ログインすると? ログインすると、解答・ギブアップをする他に、問題を投稿したり、ランキングで競うことができます。

または


おすすめ問題

この問題を解いた人はこんな問題も解いています

2月前

5

問題文

下図で、AB=AF=BC=CD=EB、$∠$EAB=80°、$∠$ABC=40°です。
$∠$FDEの大きさは何度ですか。

解答形式

半角数字で入力してください。
例)10

E

Furina 自動ジャッジ 難易度:
8日前

5

問題文

円 $\Omega$ があり,その周上に点 $P, Q$ があります.いま,$\Omega$ の弧 $PQ$ 上に $2$ 点 $A, B$ を,$P, A, B, Q$ がこの順にあるように取り,線分 $PQ$ 上に点 $C$ を取ると,三角形 $ABC$ の外接円は辺 $PQ$ に接しました.いま,$CQ$ の中点を $M$ とすると,$BM, AQ$ は三角形 $ABC$ の外接円上で交わったのでこの点を $R$ とします.いま,三角形 $ABC$ の外接円と三角形 $PQR$ の外接円の $R$ でない交点を $S$ とするとき,
$$AS=4, AP=2\sqrt{21}, BC=7$$
が成立しました.このとき,$BQ$ の長さは正整数 $a, b, c$ を用いて $\dfrac{\sqrt a-\sqrt b}{c}$ と表せるので,$a+b+c$ を解答してください.

解答形式

半角数字で解答してください.

D

Furina 自動ジャッジ 難易度:
8日前

25

問題文

半径が $4$ の円 $\Omega$ 上に2点 $A, B$ を直径をなさないようにとり,$A, B$ における $\Omega$ の接線の交点を $C$ とします.三角形 $ABC$ の垂心を $H$ とし,3点 $A, C, H$ を通る円と $\Omega$ の交点を $D$ とすれば,$AB=CD$ が成り立ちました.このとき,三角形 $ABC$ の面積の $2$ 乗を求めてください.

追記:$D\neq A$ とします.

解答形式

半角数字で解答してください.

RKC009

Furina 自動ジャッジ 難易度:
3月前

10

問題文

正三角形 $ABC$ において,その外接円の劣弧 $BC$ 上(端点を除く)に点 $D$ をとり,三角形 $ABD,BCD,CAD$ の内心をそれぞれ $I_C,I_A,I_B$ とすると,$I_BI_C=2I_AI_B=6$ が成立しました.このとき,$BC$ の長さの $2$ 乗を求めてください.

解答形式

答えは正整数値になるので,半角で解答してください.

3月前

10

問題文

円 $O_1$,円 $O_2$ が点 $P$ で外接しており,円 $O_1$ 上の点 $Q$ における円 $O_1$ の接線を引いたところ円 $O_2$ と異なる $2$ 点で交わったので,その $2$ 交点を $Q$ に近い方から順に $A,B$ とします.
$AP=4,AB=6,BP=9$ となったとき,${PQ}^2$ の値は互いに素な正の整数 $a,b$ を用いて $\dfrac{a}{b}$ と表せるので,$a+b$ の値を解答してください.

解答形式

半角数字で解答してください.

約数の個数の方程式

kusu394 自動ジャッジ 難易度:
44日前

16

問題文

自然数 $x$ に対して, $d(x)$ で $x$ の正の約数の個数を表します.
$$d(4n-1)+d(4n)=8$$ を満たす自然数 $n$ について, 小さいほうから $7$ 個の総和を求めてください.

解答形式

答えは正の整数値となるので, その整数値を半角で入力してください.

追記
=8 のところ =6 と書いてしまっていたため訂正しました
大変申し訳ありません

座王001(サドンデス2)

shoko_math 自動ジャッジ 難易度:
3月前

8

問題文

三角形 $ABC$ の辺 $AB,AC$ 上に ${BC}\parallel{DE}$ となるよう $D,E$ をとり,さらに,$D,F,G,E$ がこの順に並ぶように点 $F,G$ を線分 $DE$ 上にとる.さらに,辺 $BC$ と直線 $AF,AG$ との交点をそれぞれ $H,I$ とする.
三角形 $ADF$,四角形 $FGIH$,$AEG$ の面積がそれぞれ $3,5,8$ であるとき,三角形 $ABC$ の面積の最小値は正の整数 $a,b$ および平方因子をもたない正の整数 $c$ を用いて $a+b\sqrt{c}$ と表せるので,$a+b+c$ の値を解答してください.

解答形式

半角数字で解答してください.

D

natsuneko 自動ジャッジ 難易度:
3月前

10

問題文

こちらも問題に不備があったため、数値設定を変更いたしました。不備が重なってしまいたいへん申し訳ありません。

正六角形 $ABCDEF$ の線分 $AC, BC, DE$ 上にそれぞれ点 $P, Q, R$ を取ったところ, $PQ \perp BC, PR \perp DE, \angle QAR=60^\circ$ が成立しました. また, 三角形 $APQ$ の外心を $O$, 三角形 $APR$ の外心を $O^\prime$ とし, 三角形 $AOO^\prime$ の外接円と三角形 $APQ$ の外接円の交点を $X( \neq A)$, 三角形$AOO^\prime$ の外接円 と三角形 $APR$ の外接円の交点を $Y( \neq A)$ とすると, $BY=7$ が成立しました. このとき, 線分 $DX$ の長さを求めて下さい.

解答形式

答えは最大公約数が $1$ である正整数 $a,b, c$ によって $\cfrac{\sqrt{b}-c}{a}$ と表されるため, $a+b+c$ の値を半角数字で解答してください.

3月前

7

問題文

$\triangle{ABC}$ の辺 $AC$ に接する傍接円の中心を $I_B$,辺 $AB$ に接する傍接円の中心を $I_C$ とし,$I_BI_C$ の中点を $M$ とする.
$I_BI_C=14,BC=10$ のとき,$\triangle{MBC}$ の面積を $2$ 乗した値を解答してください.

解答形式

半角数字で解答してください

三角形の面積の和

Fuji495616 自動ジャッジ 難易度:
2月前

4

問題文

$∠$A=69°、$∠ $B=66°、$∠ $C=45°である三角形ABCがあります。辺AC上にAB=DBとなる点Dをとり、辺BC上にAB=AEとなる点Eをとりました。DBとEAの交点をFとします。三角形AFBの周りの長さが12cmの時、三角形ABCの面積の2倍と三角形ABFの面積の和は何cm$^2$ですか。

解答形式

半角数字で入力してください。
例)10

幾何問題11/22

miq_39 自動ジャッジ 難易度:
6月前

5

問題文

円 $\omega$ 上に相異なる $2$ 点 $A,B$ がある.ただし,弦 $AB$ は $\omega$ の直径ではない.$A,B$ における $\omega$ の接線をそれぞれ $l,m$ とする.劣弧 $AB$ 上(端点を除く)に点 $P$ をとり,$P$ を通り $l$ に平行な直線と $\omega$ の交点であって,$P$ でないものを $C$ とし,$P$ を通り $m$ に平行な直線と $\omega$ の交点であって,$P$ でないものを $D$ とする.$l$ と直線 $BC$ の交点を $E$,$m$ と線分 $AD$ の交点を $F$ とする.また,線分 $AF$ と線分 $BE$ の交点を $X$,線分 $CF$ と線分 $DE$ の交点を $Y$ とする.$AB=\sqrt{69}$,$AC=3$,$BD=6$ がそれぞれ成り立っているとき,線分 $XY$ の長さは,互いに素な正整数 $a,c$ および平方因子を持たない $2$ 以上の整数 $b$ を用いて $\dfrac{a\sqrt{b}}{c}$ と表されるので,$a+b+c$ の値を求めよ.

解答形式

半角数字で解答してください.

自作問題1

mahiro 自動ジャッジ 難易度:
7月前

14

問題文

$$\angle{ADB}=\angle{ADC}=\angle{CDB}=90^°$$なる四面体 $ABCD$ の外接球に関して、体積を $V$ 表面積を $S$ としたとき、非負整数 $p$ を用いて、$V=p\pi,S=p\pi$ が成り立ちました。
このとき、四面体 $ABCD$ の体積の最大値の2乗を求めてください。

解答形式

半角数字で入力して下さい。