Combination

Weskdohn 自動ジャッジ 難易度: 数学
2024年7月27日20:17 正解数: 5 / 解答数: 8 (正答率: 62.5%) ギブアップ数: 2

全 8 件

回答日時 問題 解答者 結果
2024年8月3日15:52 Combination iwashi
正解
2024年7月29日13:16 Combination aaabbb
正解
2024年7月29日13:14 Combination aaabbb
不正解
2024年7月27日23:00 Combination 326_math
正解
2024年7月27日21:04 Combination ゲスト
正解
2024年7月27日21:02 Combination 326_math
不正解
2024年7月27日21:01 Combination 326_math
不正解
2024年7月27日20:30 Combination uran
正解

おすすめ問題

この問題を解いた人はこんな問題も解いています

二重根号が外れる条件

sha256 自動ジャッジ 難易度:
6月前

8

問題文

$\sqrt{N+\sqrt{8999\cdot9001}}$が実数となり二重根号が外れるとき、
整数$N$の値を全て求めてください。
ただし$9001$,$8999$は素数であることが保証されます。

また、二重根号が外れるとは、
その値を正の有理数$a,b\cdots$を用いて$\sqrt{a}+\sqrt{b}+\cdots$と表せることをいいます。

解答形式

$N$として考えうる全ての値の総和を求めてください。

自作問題6

iwashi 自動ジャッジ 難易度:
14日前

3

問題文

$$
\lim_{n \to \infty} n \left\{ \frac{1}{n} \sum_{k=1}^{n} \left(\frac{k}{n}\right)^{2025}-\int_{0}^{1} x^{2025}dx \right\}
$$を求めよ。

解答形式

答えは互いに素な自然数$p,q$を用いて$\displaystyle\frac{p}{q}$とあらわされるので$p+q$を半角で1行目に記入してください。

三角関数の方程式

sha256 自動ジャッジ 難易度:
6月前

3

問題文

実数$x$についての以下の方程式を解いてください。($0\leq x\leq 1$)
$$
\tan(\color{red}{\sin^{-1}x})+\cot(\color{blue}{\cos^{-1}x})=\sin(\color{green}{\cot^{-1}x})+\cos(\color{purple}{\tan^{-1}x})
$$
ただし$\cot{x}$は$\frac{1}{\tan{x}}$を意味し、$\sin^{-1}x,\cos^{-1}x,\cot^{-1}x,\tan^{-1}x$でそれぞれの逆関数を表すこととします。

(※定義域と値域の取り方はWikipedia等にあるような一般的なものを用います)

解答形式

解は一つに定まり、整数$a,b$を用いて$x=\sqrt{a+\sqrt{b}}$と書けるので、$a^{10}+b^{10}$の値を半角英数字で入力してください。

自作問題2(極限)

contrail 自動ジャッジ 難易度:
42日前

10

問題文

方程式 $e^{nx}+x-2=0$ の正の解を$\alpha_n$とおきます.極限$\displaystyle \lim_{n\to \infty} (1+\alpha_n)^n$を求めて下さい.

解答形式

例)半角数字で解答して下さい.

韓国産高校数学問題 - 1

nflight11 自動ジャッジ 難易度:
3月前

7

問題文

すべての正整数 $n$ に対して $a_{n+1}=a_{n}+a_{n+2}$ を満たす数列 $\{a_n\}$ に対して、次の式が成立する。

$$\sum_{n=1}^\infty \frac{a_n}{2^n}=1998, \sum_{n=1}^\infty \frac{a_{3n}}{3^n}=1106$$

この時、$|a_{1998}a_{1106}|$を求めよ。

解答形式

答えをそのまま入力しなさい。

ちょっと長い方程式

noname 自動ジャッジ 難易度:
7月前

5

少し問題を変更いたしました。ご迷惑をおかけしてしまい申し訳ございません。

問題文

$x,y$を整数とします。次の式を満たす$x,y$の組$(x,y)$を全て求めてください。$$x^2y^2+3x^2y-12xy^2-5x^2-36xy+25y^2+60x+78y=123$$

解答形式

$x$と$y$の積$xy$としてあり得るものの総和を半角で解答してください。

平方数

katsuo_temple 自動ジャッジ 難易度:
2月前

14

問題文

$n²-n+1$が平方数となるような非負整数$n$を全て求めよ。

解答形式

$n$を小さい順に改行して半角で解答して下さい。
例)$n=3,7,9$の場合
3
7
9
と解答して下さい。

N2

orangekid 自動ジャッジ 難易度:
5月前

17

問題文

$17$で割り切れ、各桁の数の和も$17$で割り切れるような正整数を$\textbf{良い数}$と呼びます。$\textbf{相異なる}$良い数同士の差の絶対値としてあり得る最小値を求めなさい。

追記

不備が見つかったため、答えを変更しました。本当に申し訳ございません。

対称式の総和②

nanohana 自動ジャッジ 難易度:
5月前

6

問題文

$$
x+ \frac{1}{x} =1
$$
のとき以下の値を求めよ
$$
\sum_{k=1}^{10^m}(x^{k}+\frac{1}{x^{k}}) \quad
$$
ただしmは自然数である。

回答形式

半角数字で答えてください。
また、複数個の値を取りうる場合は値の小さい順に改行して入力してください。

2人で肩にpを乗せて

kusu394 自動ジャッジ 難易度:
6月前

12

問題文

素数 $p,q$ が
$$4^p+2^p+1=p^2q$$を満たします. このようなすべての組 $(p,q)$ に対して, $p+q$ の総和を解答してください.

解答形式

答えは正の整数値となるので, その整数値を半角で入力してください.

6月前

23

問題文

$$\sum_{k=m}^{n}k!=p$$を満たす自然数m,nと素数pの組(m,n,p)を全て求めよ。

解答形式

mが小さい順に、そして組ごとに改行して解答してください。

例えば(m,n,p)=(1,2,3)(2,3,4)(3,4,5)のときは、
1,2,3
2,3,4
3,4,5
のように入力してください

ただの連立方程式

sha256 自動ジャッジ 難易度:
8月前

8

問題文

次の$x,y$についての連立方程式を実数の範囲で解いてください。

$$
\begin{cases} \Large\frac{9}{x^2-xy+y^2}+\frac{7}{x^2+xy+y^2}=\frac{x}{256} \\ \Large \frac{9}{x^2-xy+y^2}-\frac{7}{x^2+xy+y^2}=\frac{y}{256} \end{cases}
$$

解答形式

解となる$(x,y)$の組全てについて$x+y$を足し合わせたものを半角英数字で入力してください。